
 TOPS−20
 Monitor Calls User’s Guide
|
|
| Electronically Distributed
|
|
|
| This manual describes the use of TOPS−20 monitor
| calls, which provide user programs with system
| services such as input/output, process control,
| file handling, and device control.
|
| This manual supersedes the TOPS−20 Monitor Calls
| User’s Guide published in June 1988. The order
| number for that document, AA−D859DM−TM, is
| obsolete.

 Change bars in the margins indicate material that
 has been added or changed since the previous
 printing of this manual.

 Operating System: TOPS−20 Version 7.0

 digital equipment corporation maynard, massachusetts

| TOPS−20 Software Update Tape No. 04, November 1990

 First Printing, May 1976
 Revised, April 1982
 Revised, September 1985
 Revised, June 1988
| Revised, November 1990

 The information in this document is subject to change without notice
 and should not be construed as a commitment by Digital Equipment
 Corporation. Digital Equipment Corporation assumes no responsibility
 for any errors that may appear in this document.

 The software described in this document is furnished under a license
 and may only be used or copied in accordance with the terms of such
 license.

 No responsibility is assumed for the use or reliability of software on
 equipment that is not supplied by Digital Equipment Corporation or its
 affiliated companies.
|
|
|
| Copyright C 1976, 1982, 1985, 1988, 1990 Digital Equipment
| Corporation.

 All Rights Reserved.

 The following are trademarks of Digital Equipment Corporation:

 CI DECtape LA50 SITGO−10
 DDCMP DECUS LN01 TOPS−10
 DEC DECwriter LN03 TOPS−20
 DECmail DELNI MASSBUS TOPS−20AN
 DECnet DELUA PDP UNIBUS
 DECnet−VAX HSC PDP−11/24 UETP
 DECserver HSC−50 PrintServer VAX
 DECserver 100 KA10 PrintServer 40 VAX/VMS
 DECserver 200 KI Q−bus VT50
 DECsystem−10 KL10 ReGIS
 DECSYSTEM−20 KS10 RSX d i g i t a l

 CONTENTS

 PREFACE

 CHAPTER 1 INTRODUCTION

 1.1 OVERVIEW . 1−1
 1.2 MONITOR CALLS 1−2
 1.2.1 Calling Sequence 1−3
 1.2.2 Error Returns 1−4
 1.3 PROGRAM ENVIRONMENT 1−6

 CHAPTER 2 INPUT AND OUTPUT USING THE TERMINAL

 2.1 OVERVIEW . 2−1
 2.2 PRIMARY I/O DESIGNATORS 2−2
 2.3 PRINTING A STRING 2−3
 2.4 READING A NUMBER 2−4
 2.5 WRITING A NUMBER 2−5
 2.6 INITIALIZING AND TERMINATING THE PROGRAM 2−7
 2.6.1 RESET% Monitor Call 2−8
 2.6.2 HALTF% Monitor Call 2−8
 2.7 READING A BYTE 2−8
 2.8 WRITING A BYTE 2−8
 2.9 READING A STRING 2−9
 2.10 SUMMARY . 2−14

 CHAPTER 3 USING FILES

 3.1 OVERVIEW . 3−1
 3.2 JOB FILE NUMBER 3−2
 3.3 ASSOCIATING A FILE WITH A JFN 3−3
 3.3.1 GTJFN% Monitor Call 3−4
 3.3.1.1 Short Form of GTJFN% 3−4
 3.3.1.2 Long Form of GTJFN% 3−12
 3.3.1.3 Summary of GTJFN% 3−15
 3.4 OPENING A FILE 3−16
 3.4.1 OPENF% Monitor Call 3−16
 3.5 TRANSFERRING DATA 3−19
 3.5.1 File Pointer 3−20
 3.5.2 Source and Destination Designators 3−20
 3.5.3 Transferring Sequential Bytes 3−21
 3.5.4 Transferring Strings 3−22
 3.5.5 Transferring Nonsequential Bytes 3−24
 3.5.6 Mapping Pages 3−24
 3.5.6.1 Mapping File Pages to a Process 3−26
 3.5.6.2 Mapping Process Pages to a File 3−27

 3.5.6.3 Unmapping Pages in a Process 3−28
 3.5.7 Mapping File Sections to a Process 3−28
 3.6 CLOSING A FILE 3−30
 3.6.1 CLOSF% Monitor Call 3−30
 3.7 ADDITIONAL FILE I/O MONITOR CALLS 3−31
 3.7.1 GTSTS% Monitor Call 3−31
 3.7.2 JFNS% Monitor Call 3−33
 3.7.3 GNJFN% Monitor Call 3−36
 3.8 SUMMARY . 3−40
 3.9 FILE EXAMPLES 3−40

 CHAPTER 4 USING THE SOFTWARE INTERRUPT SYSTEM

 4.1 OVERVIEW . 4−1
 4.2 INTERRUPT CONDITIONS 4−4
 4.3 SOFTWARE INTERRUPT CHANNELS AND PRIORITIES 4−4
 4.4 SOFTWARE INTERRUPT TABLES 4−6
 4.4.1 Specifying the Software Interrupt Tables 4−6
 4.4.2 Channel Table 4−7
 4.4.3 Priority Level Table 4−8
 4.5 ENABLING THE SOFTWARE INTERRUPT SYSTEM 4−9
 4.6 ACTIVATING INTERRUPT CHANNELS 4−9
 4.7 GENERATING AN INTERRUPT 4−10
 4.8 PROCESSING AN INTERRUPT 4−10
 4.8.1 Dismissing an Interrupt 4−11
 4.9 TERMINAL INTERRUPTS 4−12
 4.10 ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS . . 4−14
 4.10.1 Testing for Enablement 4−14
 4.10.2 Obtaining Interrupt Table Addresses 4−15
 4.10.2.1 The RIR% Monitor Call 4−15
 4.10.2.2 The XRIR% Monitor Call 4−15
 4.10.3 Disabling the Interrupt System 4−16
 4.10.4 Deactivating a Channel 4−16
 4.10.5 Deassigning Terminal Codes 4−17
 4.10.6 Clearing the Interrupt System 4−17
 4.11 SUMMARY . 4−17
 4.12 SOFTWARE INTERRUPT EXAMPLE 4−18

 CHAPTER 5 PROCESS STRUCTURE

 5.1 USES FOR MULTIPLE PROCESSES 5−2
 5.2 PROCESS COMMUNICATION 5−3
 5.2.1 Direct Process Control 5−4
 5.2.2 Software Interrupts 5−4
 5.2.3 IPCF and ENQ/DEQ Facilities 5−4
 5.2.4 Memory Sharing 5−5
 5.3 PROCESS IDENTIFIERS 5−5
 5.4 OVERVIEW OF MONITOR CALLS FOR PROCESSES 5−7
 5.5 CREATING A PROCESS 5−8
 5.5.1 Process Capabilities 5−11

 5.6 SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A
 PROCESS . 5−11
 5.6.1 GET% Monitor Call 5−11
 5.6.2 PMAP% Monitor Call 5−14
 5.7 STARTING AN INFERIOR PROCESS 5−15
 5.8 INFERIOR PROCESS TERMINATION 5−16
 5.9 INFERIOR PROCESS STATUS 5−17
 5.10 PROCESS COMMUNICATION 5−19
 5.11 DELETING AN INFERIOR PROCESS 5−20
 5.12 PROCESS EXAMPLES 5−21

 CHAPTER 6 ENQUEUE/DEQUEUE FACILITY

 6.1 OVERVIEW . 6−1
 6.2 RESOURCE OWNERSHIP 6−2
 6.3 PREPARING FOR THE ENQ/DEQ FACILITY 6−3
 6.4 USING THE ENQ/DEQ FACILITY 6−6
 6.4.1 Requesting Use of a Resource 6−6
 6.4.1.1 ENQ% Functions 6−6
 6.4.1.2 ENQ% Argument Block 6−8
 6.4.2 Releasing a Resource 6−12
 6.4.2.1 DEQ% Functions 6−13
 6.4.2.2 DEQ% Argument Block 6−14
 6.4.3 Obtaining Information About Resources 6−14
 6.5 SHARER GROUPS 6−17
 6.6 AVOIDING DEADLY EMBRACES 6−19

 CHAPTER 7 INTER−PROCESS COMMUNICATION FACILITY

 7.1 OVERVIEW . 7−1
 7.2 QUOTAS . 7−1
 7.3 PACKETS . 7−2
 7.3.1 Flags . 7−3
 7.3.2 PIDs . 7−5
 7.3.3 Length and Address of Packet Data Block 7−6
 7.3.4 Directories and Capabilities 7−6
 7.3.5 Packet Data Block 7−6
 7.4 SENDING AND RECEIVING MESSAGES 7−7
 7.4.1 Sending a Packet 7−7
 7.4.2 Receiving a Packet 7−9
 7.5 SENDING MESSAGES TO <SYSTEM>INFO 7−12
 7.5.1 Format of <SYSTEM>INFO Requests 7−13
 7.5.2 Format of <SYSTEM>INFO Responses 7−14
 7.6 PERFORMING IPCF UTILITY FUNCTIONS 7−15

 CHAPTER 8 USING EXTENDED ADDRESSING

 8.1 OVERVIEW . 8−1
 8.2 ADDRESSING MEMORY AND ACS 8−2

 8.2.1 Instruction Format 8−3
 8.2.2 Indexing . 8−4
 8.2.3 Indirection 8−5
 8.2.3.1 Instruction Format Indirect Word (IFIW) . . . 8−5
 8.2.3.2 Extended Format Indirect Word (EFIW) 8−6
 8.2.3.3 Macros for Indirection 8−6
 8.2.4 AC References 8−6
 8.2.5 Extended Addressing Examples 8−7
 8.2.6 Immediate Instructions 8−8
 8.2.6.1 XMOVEI . 8−8
 8.2.6.2 XHLLI . 8−9
 8.2.7 Other Instructions 8−9
 8.2.7.1 Instructions that Affect the PC 8−10
 8.2.7.2 Stack Instructions 8−10
 8.2.7.3 Byte Instructions 8−10
 8.3 USING MONITOR CALLS 8−11
 8.3.1 Mapping Memory 8−12
 8.3.1.1 Mapping File Sections to a Process 8−12
 8.3.1.2 Mapping Process Sections to a Process . . . 8−13
 8.3.1.3 Creating Sections 8−14
 8.3.1.4 Unmapping a Process Section 8−15
 8.3.2 Starting a Process in Any Section 8−16
 8.3.3 Setting the Entry Vector in Any Section . . . 8−16
 8.3.4 Obtaining Information About a Process 8−17
 8.3.4.1 Memory Access Information 8−17
 8.3.4.2 Entry Vector Information 8−19
 8.3.4.3 Page−Failure Information 8−19
 8.3.5 Program Data Vectors 8−19
 8.3.5.1 Manipulating PDV Addresses 8−20
 8.3.5.2 PDV Names 8−20
 8.3.5.3 Version Number 8−21
 8.4 MODIFYING EXISTING PROGRAMS 8−21
 8.4.1 Data Structures 8−21
 8.4.1.1 Index Words 8−22
 8.4.1.2 Indirect Words 8−22
 8.4.1.3 Stack Pointers 8−22
 8.5 WRITING MULTISECTION PROGRAMS 8−22

 INDEX

 FIGURES

 4−1 Basic Operational Sequence of the Software
 Interrupt System 4−3
 6−1 Deadly Embrace Situation 6−5
 6−2 Use of Sharer Groups 6−18
 7−1 IPCF Packet 7−2
 8−1 Program Counter Address Fields 8−2
 8−2 Instruction Word Address Fields 8−4
 8−3 Instruction Format Indirect Word 8−5

 8−4 Extended Format Indirect Word 8−6

 TABLES

 2−1 NOUT% Format Option 2−6
 2−2 RDTTY% Control Bits 2−10
 3−1 Standard System Values for File Specifications . . 3−3
 3−2 GTJFN% Flag Bits 3−5
 3−3 Bits Returned on GTJFN% Call 3−10
 3−4 Long Form GTJFN% Argument Block 3−13
 3−5 OPENF% Access Bits 3−17
 3−6 PMAP% Access Bits 3−26
 3−7 SMAP% Access Bits 3−29
 3−8 CLOSF% Flag Bits 3−30
 3−9 Bits Returned on GTSTS% Call 3−31
 3−10 JFNS% Format Options 3−34
 3−11 GNJFN% Return Bits 3−37
 4−1 Software Interrupt Channel Assignments 4−5
 4−2 Terminal Codes and Conditions 4−12
 5−1 Process Handles 5−6
 5−2 Inferior Process Characteristic Bits 5−9
 5−3 GET% Flag Bits 5−12
 5−4 GET% Argument Block 5−13
 5−5 GET% Argument Block Flags 5−13
 5−6 Process Status Word 5−17
 5−7 RFSTS% Status−Return Block 5−18
 6−1 ENQ% Functions 6−7
 6−2 ENQ% Argument Block 6−8
 6−3 Lock Specification Flags 6−10
 6−4 DEQ% Functions 6−13
 6−5 DEQ% Argument Block 6−14
 6−6 ENQC% Flag Bits 6−16
 7−1 Packet Descriptor Block Flags 7−3
 7−2 Flags Meaningful on a MSEND% Call 7−8
 7−3 Flags Meaningful on a MRECV% Call 7−10
 7−4 MRECV% Return Bits 7−12
 7−5 <SYSTEM>INFO Functions and Arguments 7−14
 7−6 <SYSTEM>INFO Responses 7−15
 7−7 MUTIL% Functions 7−16

 PREFACE

 The TOPS−20 Monitor Calls User’s Guide is written for the assembly
 language user who is unfamiliar with the DECSYSTEM−20 monitor calls.
 The manual introduces the user to the functions that he can request of
 the monitor from within his assembly language programs. The manual
 also teaches him how to use the basic monitor calls for performing
 these functions.

 This manual is not a reference document, nor is it complete
 documentation of the entire set of monitor calls. It is organized
 according to functions, starting with the simple and proceeding to the
 more advanced.

 Each chapter should be read from beginning to end. A user who skips
 around in his reading will not gain the full benefit of this manual.
 Once the user has a working knowledge of the monitor calls in this
 document, he should then refer to the TOPS−20 Monitor Calls Reference
 Manual for the complete descriptions of all the calls.

 To understand the examples in this manual, the user must be familiar
 with the MACRO language and the DECSYSTEM−20 machine instructions.
 The TOPS−20 MACRO Assembler Reference Manual documents the MACRO
 language. The TOPS−20 LINK Reference Manual describes the linking
 loader. The DECsystem−10/DECSYSTEM−20 Processor Reference Manual
 contains the information on the machine instructions. These three
 manuals should be used together with the Monitor Calls User’s Guide,
 and should be referred to when questions arise on the MACRO language
 or the instruction set. Another useful reference is Introduction to
 DECSYSTEM−20 Assembly Language Programming by Ralph E. Gorin,
 published by the Digital Press. It provides a thorough treatment of
 assembly language programming for the DECSYSTEM−20, emphasizing the
 analysis of programs and various methods of program synthesis.

 In addition, some of the examples in this manual contain macros and
 symbols (MOVX, TMSG, JSERR, or JSHLT, for example) from the MACSYM
 system file. This file is a universal file of definitions available

 iii

 to the user as a means of producing consistent and readable programs.

 Finally, the user should be familiar with the TOPS−20 Command Language
 to enter and run the examples. The TOPS−20 User’s Guide describes the
 TOPS−20 commands and system programs. The TOPS−20 Commands Reference
 Manual describes all operating system commands available to the
 nonprivileged user of TOPS−20.

 4

 CHAPTER 1

 INTRODUCTION

 1.1 OVERVIEW

 A program written in MACRO assembly language consists of a series of
 statements, each statement usually corresponding to one or more
 machine language instructions. Each statement in the MACRO program
 may be one of the following types:

 1. A MACRO assembler directive, or pseudo−operation (pseudo−op),
 such as SEARCH or END. These pseudo−ops are commands to the
 MACRO assembler and are performed when the program is
 assembled. Refer to the DECSYSTEM−20 MACRO Assembler
 Reference Manual for detailed descriptions of the MACRO
 pseudo−ops.

 2. A MACRO assembler direct assignment statement. These
 statements are in the form

 symbol=value

 and are used to assign a specific value to a symbol.
 Assignment statements are processed by the MACRO assembler
 when the program is assembled. These statements do not
 generate instructions or data in the assembled program.

 3. A MACRO assembler constant declaration statement, such as

 ONE: EXP 1

 These statements are processed when the program is assembled.

 4. An instruction mnemonic, or symbolic instruction code, such
 as MOVE or ADD. These symbolic instruction codes represent
 the operations performed by the central processor when the
 program is executed. Refer to the DECsystem−10/DECSYSTEM−20
 Processor Reference Manual for detailed descriptions of the
 symbolic instruction codes.

 1−1

 INTRODUCTION

 5. A monitor call, or JSYS, such as RESET or BIN. These calls
 are commands to the monitor and are performed when the
 program is executed. This manual describes the commonly−used
 monitor calls. However, the user should refer to the TOPS−20
 Monitor Calls Reference Manual for detailed descriptions of
 all the calls.

 When the MACRO program is assembled, the MACRO assembler processes the
 statements in the program by

 o translating symbolic instruction codes to binary codes.

 o relating symbols to numeric values.

 o assigning relocatable or absolute memory addresses.

 The MACRO assembler also converts each symbolic call to the monitor
 into a Jump−to−System (JSYS) instruction.

 1.2 MONITOR CALLS

 Monitor calls are used to request monitor functions, such as input or
 output of data (I/O), error handling, and number conversions, during
 the execution of the program. These calls are accomplished with the
 JSYS instruction (operation code 104), where the address portion of
 the instruction indicates the particular function.

 Each monitor call has a predefined symbol indicating the particular
 monitor function to be performed (for example, OPENF% to indicate
 opening a file). The symbols are defined in a system file called
 MONSYM. Monitor calls defined in Release 4 and later require a
 percent sign (%) as the final character in the call symbol. Monitor
 calls defined prior to Release 4 do not require the %, but do accept
 it. The current convention is that all monitor calls use the % as
 part of the call symbol. This manual follows that convention. To use
 the symbols and to cause them to be defined correctly, the user’s
 program must contain the statement

 SEARCH MONSYM

 at the beginning of the program. During the assembly of the program,
 the assembler replaces the monitor call symbol with an instruction
 containing the operation code 104 in the left half and the appropriate
 function code in the right half.

 Arguments for a JSYS instruction are placed in accumulators (ACs).
 Any data resulting from the execution of the JSYS instruction are
 returned in the accumulators or in an address in memory to which an
 accumulator points. Therefore, before the JSYS instruction can be
 executed, the appropriate arguments must be placed in the specific
 accumulators.

 1−2

 INTRODUCTION

 The system file MACSYM.MAC contains a number of useful macros for the
 assembly language programmer. To use MACSYM macros, the user’s
 program must contain the statements

 SEARCH MACSYM
 .REQUIRE SYS:MACREL ;include support routines

 at the beginning of the program. Since most bits defined for use with
 the monitor have symbolic names, macros enable the programmer to
 utilize these bits without knowledge of their exact position. Several
 MACSYM macros that are especially valuable to the TOPS−20 assembly
 language programmer are MOVX, TXnn (where nn indicates one of the 64
 test instructions provided by the hardware), and FLD. MOVX loads an
 AC with a constant using the proper MOVE instructions, depending on
 the constant’s position in the word. The TXnn macros expand to allow
 all combinations of modification and testing to be defined. For
 example

 TXNN AC1,GS%EOF

 tests AC1 for the presence of GS%EOF, no modification, and skip if not
 equal to zero. This instruction will work regardless of the actual
 bit position of GS%EOF. The FLD macro causes a value to be right
 justified in a field. For example

 FLD(7,OF%BSZ)

 places the value 7 in position OF%BSZ, right justified at bit 5
 (OF%BSZ is defined as bits 0−5). These macros will be used
 consistently throughout this document.

 1.2.1 Calling Sequence

 Arguments for the calls are placed in accumulators 1 through 4
 (AC1−AC4). If more than four arguments are required for a particular
 call, the arguments are placed in a list to which an accumulator
 points. The arguments for the calls are specific bit settings or
 values. These bit settings and values are defined in MONSYM with
 symbol names, which can be used in the program. In fact, it is
 recommended that the user write his program using symbols whenever
 possible. This makes the program easier to read by another user. Use
 of symbols also allows the values of the symbols to be redefined
 without requiring the program to be changed. In this manual, the
 arguments for the monitor calls are described with both the bit
 settings and the symbol names. All program examples are written using
 the symbol names.

 1−3

 INTRODUCTION

 The set of instructions that place the arguments in the accumulators
 is followed by one line of code giving the particular monitor call
 symbol. During the program’s execution, control is transferred to the
 monitor when this line of code is reached.

 1.2.2 Error Returns

 TOPS−20 provides a consistent way to handle all JSYS errors. For most
 monitor calls upon a successful return, the instruction following the
 call is executed. If an error occurs during the execution of the
 call, the monitor examines the instruction following the call. If the
 instruction is a JUMP instruction with the AC field specified as
 12−17, the monitor transfers control to a user−specified address. If
 the instruction is not a JUMP instruction, the monitor generates an
 illegal instruction trap indicating an illegal instruction, which the
 user’s program can process via the software interrupt system (refer to
 Chapter 4). If the user’s program is not prepared to process the
 instruction trap, the program execution halts, and a message is output
 stating the reason for failure.

 To place a JUMP instruction in his program, the user can include a
 statement using one of six predefined symbols. These symbols are

 ERJMPR address (= JUMP 12,address)
 ERCALR address (= JUMP 13,address)
 ERJMPS address (= JUMP 14,address)
 ERCALS address (= JUMP 15,address)
 ERJMP address (= JUMP 16,address)
 ERCAL address (= JUMP 17,address)

 and cause the assembler to generate a JUMP instruction. The JUMP
 instruction is a non−operation instruction (that is, a no−op) as far
 as the hardware is concerned. However, the monitor executes the JUMP
 instruction by transferring control to the address specified, which is
 normally the beginning of an error processing routine written by the
 user. If the user includes the ERJMP symbol, control is transferred
 as though a JUMPA instruction had been executed, and control does not
 return to his program after the error routine is finished. If the
 user includes the ERCAL symbol, control is transferred as though a
 PUSHJ 17, address instruction had been executed. If the error routine
 executes a POPJ 17, instruction, control returns to the user’s program
 at the location following the ERCAL.

 If the user includes the ERJMPR symbol, the monitor behaves the same
 as it would if the ERJMP symbol had been included, except that the
 last error encountered by the process is stored in the user’s AC1.
 (Refer to Appendix B of the TOPS−20 Monitor Calls Reference Manual for
 the list of error codes, mnemonics, and message strings.) The ERCALR
 symbol functions the same as ERCAL except the error code encountered
 is returned in the user’s AC1. ERJMPS and ERCALS function similarly
 except the monitor suppresses the storing of the error code in the

 1−4

 INTRODUCTION

 user’s AC1. Instead, AC1 is preserved and contains either the
 original contents from when the monitor call was given, or a partially
 updated value prior to the error.

 Prior to the implementation of the ERJMP/ERCAL facilities, certain
 monitor calls returned control to the user’s program at various
 locations after the calling address. Approximately one third of the
 JSYSs return to the +1 address only on failure, and to the location
 immediately following that (the +2 address) on successful execution of
 the call. A few calls return +1, +2, or +3, dependent on varying
 conditions of success or failure (for examples, see ERSTR% or GACTF%
 in the TOPS−20 Monitor Calls Reference Manual); and some calls do not
 return at all (see HALTF% or WAIT%). Refer to Chapter 3 of the
 TOPS−20 Monitor Calls Reference Manual for the possible returns for
 each monitor call.

 When a failure occurs during the execution of a monitor call, the
 monitor stores an error code. The error code indicates the cause of
 the failure. This error code is usually stored in the right half of
 AC1, but can also be stored in the monitor’s data base or a user’s
 data block. In either case, you can obtain the message associated
 with the error by using the GETER% or ERSTR% call.

 The ERJMP/ERCAL facilities can also be used following a machine
 instruction, and will trap for the following conditions:

 o Illegal instruction

 o Illegal memory read

 o Illegal memory write

 o Pushdown list overflow

 The ERJMP/ERCAL facilities can be used after all monitor calls,
 regardless of whether the call has one or two returns. To handle
 errors consistently, users are encouraged to employ either the ERJMPR,
 ERCALR, ERJMPS, or ERCALS symbol with all calls. All of the six
 predefined jump symbols are no−ops, unless they immediately follow a
 monitor call or instruction that fails. Error codes can be obtained
 by the program and translated into their corresponding error mnemonic
 and message strings with the GETER% and ERSTR% monitor calls.

 TOPS−20 provides convenient macros and subroutines for handling
 monitor call error routines. They can be found in the system file
 MACSYM.MAC. Two such macros are EJSERR and EJSHLT. EJSERR prints out
 an error message and returns control to the next instruction following
 the failing monitor call. EJSHLT prints out an error message and
 halts processing of the program.

 The following is an example of executing the BIN% monitor call (see
 Chapter 3 for more information on this monitor call) that has a single

 1−5

 INTRODUCTION

 return. If the execution of the call is successful, the program reads
 and stores a character. If the execution of the call is not
 successful, the program transfers control to an error routine. This
 routine processes the error and then returns control back to the main
 program sequence. Note that ERCALS stores the return address on the
 stack.

 DOIT: MOVE T1,INJFN ;obtain JFN for input file
 BIN% ;input one character
 ERCALS ERROR ;call error routine if problem
 MOVEM T2,CHAR ;store character
 JRST DOIT ;and get another
 ERROR: GTSTS% ;read file status
 TXNE T2,GS%EOF ;end of file?
 JRST EOF ;yes, process end−of−file condition
 HRROI T1,[ASCIZ/
 ?INPUT ERROR, CONTINUING
 /] ;no, data error
 PSOUT% ;print message
 RET ;return to program (POPJ 17,)

 The ASCIZ pesudo−op specifies a left−justified ASCII string terminated
 with a null (that is, a byte containing all bits equal to zero) byte.

 1.3 PROGRAM ENVIRONMENT

 The user program environment in the TOPS−20 operating system consists
 of a job structure that can contain many processes. A process is a
 runnable or schedulable entity capable of performing computations in
 parallel with other processes. This means that a runnable program is
 associated with at least one process.

 Each process has its own address space for storing its computations.
 This address space is called virtual space because it is actually a
 "window" into physical storage. The address space is divided into 32
 (decimal) sections. Each section is divided into 512 (decimal) pages,
 and each page contains 512 (decimal) words. Each word contains 36
 bits.

 A process can communicate with other processes in the following ways:

 o explicitly, by software interrupts or system facilities (the
 inter−process communication facility, or IPCF, for example).

 o implicitly, by changing parts of its environment (its address
 space, for instance) that are being shared with other
 processes.

 A process can create other processes inferior to it, but there is one
 control process from which the chain of creations begins. A process

 1−6

 INTRODUCTION

 is said to exist when a superior process creates it and is said to end
 when a superior process deletes it. Refer to Chapter 5 for more
 information on the process structure.

 A set of one or more related processes, normally under control of a
 single user, is a job. Each active process is part of some job on the
 system. A job is defined by a user name, an account number, some open
 files, and a set of running and/or suspended processes. A job can be
 composed of several running or suspended programs.

 The following diagram illustrates a job structure consisting of four
 processes.

 −−−−−−−−−−−−−−−−−
 | |
 | TOP PROCESS |
 | |
 −−−−−−−−−−−−−−−−−
 |
 |
 |
 −−−−−−−−−−−−−−−−−−−−−−−−−−−
 | |
 −−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−
 | | | |
 | PROCESS A | | PROCESS B |
 | | | |
 −−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−
 |
 |
 |
 −−−−−−−−−−−−−−−
 | |
 | PROCESS C |
 | |
 −−−−−−−−−−−−−−−

 Both process A and 1 process B are created by the TOP PROCESS and thus
 are directly inferior to it. Process C is created by process B and
 thus is directly inferior to process B only. Process C is indirectly
 inferior to the TOP PROCESS.

 In summary, processes can be considered as independent virtual jobs
 with well−defined relationships to other processes in the system, and
 a job is a collection of these processes.

 1−7
 2−1

 CHAPTER 2

 INPUT AND OUTPUT USING THE TERMINAL

 One of the main reasons for using monitor calls is to transfer data
 from one location to another. This chapter discusses moving data to
 and from the user’s terminal.

 2.1 OVERVIEW

 Data transfers to and from the terminal are in the form of either
 individual bytes or text strings. The bytes are 7−bit bytes. The
 strings are ASCII strings ending with a 0 byte. These strings are
 called ASCIZ strings.

 To designate the desired string, the user’s program must include a
 statement that points to the beginning of the string being read or
 written. The MACRO pseudo−op, POINT, can be used to set up this
 pointer, as shown in the following sequence of statements:

 MOVE AC1,PTR
 .
 .
 .
 PTR: POINT 7,MSG
 MSG: ASCIZ/TEXT MESSAGE/

 Accumulator 1 contains the symbolic address (PTR) of the pointer. At
 the address specified by PTR is the pointer to the beginning of the
 string. The pointer is set up by the POINT pseudo−op. The general
 format of the POINT pseudo−op is:

 POINT decimal−byte−size,address,decimal−byte−position

 (Refer to the TOPS−20 MACRO Assembler Reference Manual for more
 information on the POINT pseudo−op.) In the example above, the POINT
 pseudo−op has been written to indicate 7−bit bytes starting before the
 left−most bit in the address specified by MSG.

 2−1

 INPUT AND OUTPUT USING THE TERMINAL

 Another way of setting up an accumulator to contain the address of the
 pointer is with the following statement:

 HRROI AC1,[ASCIZ/TEXT MESSAGE/]

 The instruction mnemonic HRROI causes a −1 to be placed in the left
 half of accumulator 1 and the address of the string to be placed in
 the right half. However, in the above statement, a literal (enclosed
 in square brackets) has been used instead of a symbolic address. The
 literal causes the MACRO assembler to:

 o store data within brackets (the string) in a table.

 o assign an address to the first word of the data.

 o insert that address as the operand to the HRROI instruction.

 Literals have the advantage of showing the data at the point in the
 program where it will be used, instead of showing it at the end of the
 program.

 As far as the I/O monitor calls are concerned, a word in this format
 (−1 in the left half and an address in the right half) designates the
 system’s standard pointer (that is, a pointer to a 7−bit ASCIZ string
 beginning before the leftmost byte of the string). The result of the
 HRROI statement is interpreted by the monitor as functionally
 equivalent to the word assembled by the POINT 7, address pseudo−op and
 is the recommended statement to use in preparation for a monitor call.
 However, byte manipulation instructions (for example, ILDB, IBP,
 ADJBP) will not operate properly with this type of pointer.

 After a string is read, the pointer is advanced to the character
 following the terminating character of the string. After a string is
 written, the pointer is advanced to the character following the last
 non−null character written.

 Most TOPS−20 monitor calls accept one−word global byte pointers when
 executed from a nonzero section (see Section 8.3). Global byte
 pointers are used with extended addressing and are fully explained in
 Chapter 8 of this document. Unless specifically stated, TOPS−20
 monitor calls do not accept two−word global byte pointers.

 2.2 PRIMARY I/O DESIGNATORS

 To transfer data from one location to another, the user’s program must
 indicate the source from which the data is to be obtained and the
 destination where the data is to be placed. By default, the user’s
 terminal is defined as the source and destination. The default can be
 overridden by using the SPJFN% monitor call (refer to the TOPS−20
 Monitor Calls Reference Manual). Examples in this book assume the

 2−2

 INPUT AND OUTPUT USING THE TERMINAL

 user’s terminal to be the source (input) and destination (output)
 device. Two designators are used to represent the user’s terminal:

 1. The symbol .PRIIN to represent the user’s terminal as the
 source (input) device.

 2. The symbol .PRIOU to represent the user’s terminal as the
 destination (output) device.

 These symbols are called the primary input and output designators and
 by default are used to represent the terminal running the program.
 They are defined in the system file MONSYM.MAC and do not have to be
 defined in the user’s program as long as the program contains the
 statement

 SEARCH MONSYM

 2.3 PRINTING A STRING

 Many times a program may need to print an error message or some other
 string, such as a prompt to request input from the user at the
 terminal. The PSOUT% (Primary String Output) monitor call is used to
 print such a string on the terminal. This call copies the designated
 string from the program’s address space. Thus, the source of the data
 is the program’s address space, and the destination for the data is
 the terminal. The program need only supply the pointer to the string
 being printed.

 Accumulator 1 (AC1) is used to contain the address of the pointer.
 After AC1 is set up with the pointer to the string, the next line of
 code is the PSOUT% call. Thus, an example of the PSOUT% call is:

 HRROI AC1,[ASCIZ/TEXT MESSAGE/] ;string to print
 PSOUT% ;print TEXT MESSAGE

 The PSOUT% call prints on the terminal all the characters in the
 string until it encounters a null byte. Note that the string is
 printed exactly as it is stored in the program, starting at the
 current position of the terminal’s print head or cursor and ending
 with the last character in the string. If a carriage return and line
 feed are to be output, either before or after the string, these
 characters should be inserted as part of the string. For example, to
 print TEXT MESSAGE on one line and to output a carriage return−line
 feed after it, the user’s program includes the call

 HRROI AC1,[ASCIZ/TEXT MESSAGE
 /]
 PSOUT%

 2−3

 INPUT AND OUTPUT USING THE TERMINAL

 After the string is printed, the instruction following the PSOUT% call
 in the user’s program is executed. Also, the pointer in AC1 is
 updated to point to the character following the last non−null
 character written.

 The macro TMSG, found in the system file MACSYM, does the same thing
 as the example above. This macro offers the programmer a convenient
 way for printing messages on the terminal. For example

 TMSG <TEXT MESSAGE
 >

 caused the text message contained between the angle brackets,
 including the carriage return and line feed, to print on the terminal.
 The TMSG macro, along with others previously mentioned, will be used
 consistently in examples throughout this document. Refer to the
 system file MACSYM.MAC for further information on MACSYM macros.

 Refer to Section 1.2.2 for information concerning error returns.

 2.4 READING A NUMBER

 The NIN% (Number Input) monitor call is used to read an integer. This
 call does not assume the terminal as the source designator; therefore,
 the user’s program must specify this. The NIN% call accepts the
 number from any valid source designator, including a string in memory.
 This section discusses reading a number directly from the terminal.
 Refer to Section 2.9 for an example of using the NIN% call to read the
 number from a string in memory. The destination for the number is
 AC2, and the NIN% call places the binary value of the number read into
 this accumulator. The user’s program also specifies a number in AC3
 that represents the radix of the number being input. The radix given
 can be in the range 2−36.

 Thus, the setup for the NIN% monitor call is the following:

 MOVEI AC1,.PRIIN ;AC1 contains the primary input designator
 ;(the user’s terminal)

 MOVEI AC3,^D10 ;AC3 contains the radix of the number being
 ;input (in this case a decimal number)

 NIN% ;The call to input the number

 After completion of the NIN% call, control returns to the program at
 one of two places (refer to Section 1.2.2). If an error occurs during
 the execution of the call, control returns to the instruction
 following the call. This instruction should be a jump−type
 instruction to an error processing routine (see Section 1.2.2). Also,
 an error code is placed in AC3 (refer to Appendix B of the TOPS−20
 Monitor Calls Reference Manual for the error codes). If the execution

 2−4

 INPUT AND OUTPUT USING THE TERMINAL

 of the NIN% call is successful, control returns to the second
 instruction following the call. The number input from the terminal is
 placed in AC2.

 The NIN% call terminates when it encounters a nondigit character (for
 example, a letter, a punctuation character, or a control character).
 This means that if 32X1 were typed on the terminal, on return AC2
 contains a 40 (octal) because the NIN% call terminated when it read
 the X.

 The following program prints a message and then accepts a decimal
 number from the user at the terminal. Note that the NIN% call
 terminates reading on any nondigit character; therefore, the user
 cannot edit his input with any of the editing characters (for example,
 DELETE, CTRL/W). The RDTTY% call (refer to Section 2.9) should be
 used in programs that read from the terminal because it allows the
 user to edit his input as he is typing it.

 SEARCH MONSYM
 HRROI AC1,[ASCIZ/
 Enter # of seconds: /]
 PSOUT% ;output a prompt message
 MOVEI AC1,.PRIIN ;input from the terminal
 MOVEI AC3,^D10 ;use the decimal radix
 NIN% ;input a decimal number
 ERJMP NINERR ;error−go to error routine
 MOVEM AC2, NUMSEC ;save number entered
 .
 .
 .
 NUMSEC:BLOCK 1
 .
 .
 .

 2.5 WRITING A NUMBER

 The NOUT% (Number Output) monitor call is used to output an integer.
 The user’s program moves the number to be output into AC2. The
 program must specify the destination for the number in AC1 and the
 radix in which the number is to be output in AC3. The radix given
 cannot be greater than base 36. In addition, the user’s program can
 specify certain formatting options to be used when printing the
 number.

 Thus, the general setup for the NOUT% monitor call is as follows:

 AC1: output designator
 AC2: number being output
 AC3: format options in left half and radix in right half

 2−5

 INPUT AND OUTPUT USING THE TERMINAL

 The format options that can be specified in the left half of AC3 are
 described in Table 2−1.

 Table 2−1: NOUT% Format Option

 __

 Bit Symbol Meaning
 __

 0 NO%MAG Print the number as a positive 36−bit
 number. For example, −1 would be printed
 as 777777 777777 if radix=8).

 1 NO%SGN Print the appropriate sign (+ or −) before
 the number. If bits NO%MAG and NO%SGN are
 both on, a plus sign is always printed.

 2 NO%LFL Print leading filler. If this bit is not
 set, trailing filler is printed and bit
 NO%ZRO is ignored.

 3 NO%ZRO Use 0’s as the leading filler if the
 specified number of columns allows filling.
 If this bit is not set, blanks are used as
 the leading filler if the number of columns
 allows filling.

 4 NO%OOV Output on column overflow and return an
 error. If this bit is not set, column
 overflow is not output.

 5 NO%AST Print asterisks when the column overflows.
 If this bit is not set, and bit 4 (NO%OOV)
 is set, all necessary digits are printed
 when the columns overflow.

 6−10 Reserved for Digital (must be 0).

 11−17 NO%COL Print the number of columns indicated.
 This value includes the sign column. If
 this field is 0, as many columns as
 necessary are printed.
 __

 The following instruction sequence is an example of the NOUT% monitor
 call. This sequence prints a number, stored in location NUMB, on the
 user’s terminal. The number can be positive, negative or zero, with
 no special formatting.

 2−6

 INPUT AND OUTPUT USING THE TERMINAL

 MOVX AC1,.PRIOU ;use primary output
 MOVE AC2,NUMB ;get number from location NUMB
 MOVX AC3,^D10 ;no special format
 ;decimal radix
 NOUT% ;print number
 EJSHLT ;unexpected fatal error. Halt
 ;and print message.

 Refer to Section 1.2.2 for information concerning error returns. The
 following example illustrates the use of the three monitor calls
 described so far, as well as the TMSG macro. The RESET% and HALTF%
 monitor calls are described in Section 2.6.

 SEARCH MONSYM
 SEARCH MACSYM
 .REQUIRE SYS:MACREL
 AC1==1
 AC2==2
 AC3==3
 START: RESET% ;prepare program environment
 HRROI AC1,[ASCIZ/PLEASE TYPE A DECIMAL NUMBER: /]
 PSOUT%
 MOVEI AC1,.PRIIN ;source designator
 MOVEI AC3,^D10 ;decimal radix
 NIN%
 ERJMPS ERROR ;if input error print message
 ;halt.
 TMSG <THE OCTAL EQUIVALENT IS >
 MOVEI AC1,.PRIOU ;destination designator
 MOVEI AC3,^D8 ;octal radix
 NOUT%
 EJSHLT ;fatal error.
 ;Same as ERJMPS ERROR.
 HALTF% ;return to command language
 JRST START ;begin again, if continued
 ERROR: TMSG<
 ?ERROR−TYPE START TO BEGIN AGAIN>
 HALTF%
 JRST START ;user types continue−start
 ;again
 END START

 2.6 INITIALIZING AND TERMINATING THE PROGRAM

 Two monitor calls that have not yet been described were used in the
 above program − RESET% and HALTF%.

 2−7

 INPUT AND OUTPUT USING THE TERMINAL

 2.6.1 RESET% Monitor Call

 A good programming practice is to include the RESET% monitor call at
 the beginning of every assembly language program. This call closes
 any existing open files and releases their JFNs, kills any inferior
 processes, clears the software interrupt system (see Chapter 4), and
 performs various other process initilization functions. For a
 complete list of the functions provided by the RESET% monitor call,
 refer to the description of the call in the TOPS−20 Monitor Calls
 Reference Manual. The format of the call is

 RESET%

 and control always returns to the next instruction following the call.

 2.6.2 HALTF% Monitor Call

 To stop the execution of a program and return control to the TOPS−20
 Command Language, the user must include the HALTF% monitor call as the
 last instruction performed in the program. The user can then resume
 execution of the program at the instruction following the HALTF% call
 by typing the CONTINUE command after control has returned to command
 level.

 2.7 READING A BYTE

 The PBIN% (Primary Byte Input) monitor call is used to read a single
 byte (that is, one character) from the terminal. The user’s program
 does not have to specify the source and destination for the byte
 because this call uses the primary input designator (that is, the
 user’s terminal) as the source and accumulator 1 as the destination.
 After execution of the PBIN% call, control returns to the instruction
 following the PBIN%. If execution of the call is successful, the byte
 read from the terminal is right−justified in AC1. If execution of the
 call is not successful, an illegal instruction trap is generated, as
 explained in Section 1.2.2.

 2.8 WRITING A BYTE

 The PBOUT% (Primary Byte Output) monitor call is used to write a
 single byte to the terminal. This call uses the primary output
 designator (that is, the user’s terminal) as the destination for the
 byte; thus, the user’s program does not have to specify the
 destination. The source of the byte being written is accumulator 1;
 therefore, the user’s program must place the byte right−justified in
 AC1 before the call.

 2−8

 INPUT AND OUTPUT USING THE TERMINAL

 After execution of the PBOUT% call, control returns to the instruction
 following the PBOUT%. If execution of the call is successful, the
 byte is written to the user’s terminal. If execution of the call is
 not successful, an illegal instruction trap is generated, as explained
 in Section 1.2.2.

 2.9 READING A STRING

 Up to this point, monitor calls have been presented for printing a
 string, reading and writing an integer, and reading and writing a
 byte. The next call to be discussed obtains a string from the
 terminal and, in addition, allows the user at the terminal to edit his
 input as he is typing it.

 The RDTTY% (Read from Terminal) monitor call reads input from the
 user’s terminal (that is, from .PRIIN) into the program’s address
 space. Input is read until the user either types an appropriate
 terminating (break) character or inputs the maximum number of
 characters allowed in the string, whichever occurs first. Output
 generated as a result of character editing is printed on the user’s
 terminal (that is, output to .PRIOU).

 The RDTTY% call handles the following editing functions:

 1. Delete the last character in the string if the user presses
 the DELETE key while typing his input.

 2. Delete back to the last punctuation character in the string
 if the user types CTRL/W while typing his input.

 3. Delete the current line if the user types CTRL/U while typing
 his input.

 4. Retype the current line if the user types CTRL/R while typing
 his input.

 Because the RDTTY% call can handle these editing functions, a program
 can accept input from the terminal and allow this input to be
 corrected by the user as he is typing it. For this reason, the RDTTY
 call should be used to read input from the terminal before processing
 that input with calls such as NIN%.

 The RDTTY% call accepts three words of arguments in AC1 through AC3.

 AC1: pointer to area in program’s address space where input is
 to be placed. This area is called the text input buffer.

 AC2: control bits in the left half, and maximum number of bytes
 in the text input buffer in the right half.

 2−9

 INPUT AND OUTPUT USING THE TERMINAL

 AC3: pointer to buffer for text to be output before the user’s
 input if the user types a CTRL/R, or 0 if only the user’s
 input is to be output on a CTRL/R.

 The control bits in the left half of AC2 specify the characters on
 which to terminate the input. These bits are described in Table 2−2.

 Table 2−2: RDTTY% Control Bits

 __

 Bit Symbol Meaning
 __

 0 RD%BRK Terminate input when user types a
 CTRL/Z or presses the ESC key.

 1 RD%TOP Terminate input when user types one of
 the following:

 CTRL/G
 CTRL/L
 CTRL/Z
 ESC key
 RETURN key
 Line feed key

 2 RD%PUN Terminate input when user types one of
 the following:

 CTRL/A−CTRL/F
 CTRL/H−CTRL/I
 CTRL/K
 CTRL/N−CTRL/Q
 CTRL/S−CTRL/T
 CTRL/X−CTRL/Y
 ASCII codes 34−36
 ASCII codes 40−57
 ASCII codes 72−100
 ASCII codes 133−140
 ASCII codes 173−176

 The ASCII codes listed above represent
 the punctuation characters in the
 ASCII character set. Refer to the
 ASCII character set table in Appendix
 A of the TOPS−20 Monitor Calls
 Reference Manual for these characters.

 3 RD%BEL Terminate input when user types the
 RETURN or line feed key (that is, end
 of line).

 2−10

 INPUT AND OUTPUT USING THE TERMINAL

 4 RD%CRF Store only the line feed in the input
 buffer when the user presses the
 RETURN key. A carriage return will
 still be output to the terminal but
 will not be stored in the buffer. If
 this bit is not set and the user
 presses the RETURN key, both the
 carriage return and the line feed will
 be stored as part of the input.

 5 RD%RND Return to program if the user attempts
 to delete past the beginning of his
 input. This allows the program to
 take control if the user tries to
 delete all of his input. If this bit
 is not set, the program waits for more
 input.

 6 Reserved for Digital (must be 0).

 7 RD%RIE Return to program when there is no
 input (that is, the text input buffer
 is empty). If this bit is not set,
 the program waits for more input.

 8 Reserved for Digital (must be 0).

 9 RD%BEG Return to user program if the user
 attempts to edit beyond the beginning
 of the input buffer.

 10 RD%RAI Convert lower case input to upper
 case.

 11 RD%SUI Suppress the CTRL/U indication on the
 terminal when a CTRL/U is typed by the
 user. This means that if the user
 types a CTRL/U, XXX will not be
 printed and, on display terminals, the
 characters will not be deleted from
 the screen. If this bit is not set
 and the user types a CTRL/U, XXX will
 be printed and, if appropriate, the
 characters will be deleted from the
 screen. In neither case is the CTRL/U
 stored in the input buffer.

 2−11

 INPUT AND OUTPUT USING THE TERMINAL

 15 RD%NED Disable editing characters in user
 break mask. If this bit is set, then
 any editing character (^R, ^U, ^V, ^W,
 and DELETE) in the user supplied break
 mask does not have its editing
 function.
 __

 If no control bits are set in the left half of AC2, the input will be
 terminated when the user presses the RETURN or line feed key (that is,
 terminated on an end−of−line condition only).

 The count in the right half of AC2 specifies the number of bytes
 available for storing the string in the program’s address space. The
 input is terminated when this count is exhausted, even if a specified
 break character has not yet been typed.

 The pointer in AC3 is to the beginning of a buffer containing the text
 to be output if the user types a CTRL/R. When this happens, the text
 in this separate buffer is output, followed by any text that has been
 typed by the user. The text in this buffer cannot be edited with any
 of the editing characters (that is, DELETE, CTRL/W, or CTRL/U). If
 the contents of AC3 is zero, then no such buffer exists, and if the
 user types CTRL/R, only the text in the input buffer will be output.

 If execution of the RDTTY% call is successful, the input is in the
 specified area in the program’s address space. The character that
 terminated the input is also stored. (If the terminating character is
 a carriage return followed by a line feed, the line feed is also
 stored.) Control returns to the user’s program at the second location
 following the call. The pointer in AC1 is advanced to the character
 following the last character stored. The count in the right half of
 AC2 is updated to reflect the remaining bytes in the buffer, and
 appropriate bits are set in the left half of AC2. The bits that can
 be set on a successful return are:

 Bit 12 RD%BTM The input was terminated because one of
 the specified break characters was
 typed. This break character is placed
 in the input buffer. If this bit is not
 set, the input was terminated because
 the byte count was exhausted.

 Bit 13 RD%BFE Control was returned to the program
 because there is no more input and
 RD%RIE was set in the call.

 2−12

 INPUT AND OUTPUT USING THE TERMINAL

 Bit 14 RD%BLR The limit to which the user can backup
 for editing his input was reached.

 For consistent handling of error returns refer to Section 1.2.2.

 The following example illustrates the recommended method for reading
 data from the terminal. This example is essentially the same as the
 one in Section 2.5; however, the RDTTY% call is used to read the
 number before the NIN% call processes it. This program stores the
 last error encountered in location LASTER and therefore uses the
 ERJMPR pseudo−op.

 SEARCH MONSYM
 SEARCH MACSYM
 .REQUIRE SYS:MACREL
 AC1==1
 AC2==2
 AC3==3
 START: RESET% ;prepare program environment
 HRROI AC1,PROMPT
 PSOUT% ;type prompt
 HRROI AC1,BUFFER ;location to store number
 MOVEI AC2,BUFLEN*5 ;size of buffer
 HRROI AC3,PROMPT ;pointer to prompt
 RDTTY% ;read number from term. with editing
 ERJMPR ERROR ;save error code, print message
 HRROI AC1,BUFFER ;and halt source designator
 MOVEI AC3,^D10 ;decimal radix
 NIN%
 ERJMPR ERROR ;if input error, print message
 TMSG <THE OCTAL EQUIVALENT IS >
 MOVEI AC1,.PRIOU ;and halt destination designator
 MOVEI AC3,^D8 ;octal radix
 NOUT%
 ERJMPR ERROR ;save error code, print message
 HALTF% ;and halt return to command
 JRST START ;language begin again, if continued
 PROMPT: ASCIZ/PLEASE TYPE A DECIMAL NUMBER: /
 BUFLEN==10
 BUFFER: BLOCK BUFLEN
 LASTER: BLOCK 1
 ERROR: MOVEM AC1,LASTER ;save error code
 TMSG <
 ?ERROR−TYPE START TO BEGIN AGAIN>;print general error message
 HALTF% ;halt
 JRST START ;start over if continued
 END START

 2−13

 INPUT AND OUTPUT USING THE TERMINAL

 2.10 SUMMARY

 Data transfers of sequential bytes or text strings can be made to and
 from the terminal. The monitor calls for transferring bytes are PBIN%
 and PBOUT% and for transferring strings are PSOUT% and RDTTY%. The
 NIN% and NOUT% monitor calls can be used for reading and writing a
 number. In general, the user’s program must specify a source from
 which the data is to be obtained and a destination where the data is
 to be placed. In the case of terminal I/O, the symbol .PRIIN
 represents the user’s terminal as the source, and the symbol .PRIOU
 represents the user’s terminal as the destination.

 2−14

 CHAPTER 3

 USING FILES

 3.1 OVERVIEW

 All information stored in the DECSYSTEM−20 is kept in files. The
 basic unit of storage in a file is a page containing bytes from 1 to
 36 bits in length. Thus, a sequence of pages constitutes a file. In
 most cases, files have names. Although all files are handled in the
 same manner, certain operations are unavailable for files on
 particular devices.

 Programs can reference files by several methods:

 o In a sequential byte−by−byte manner.

 o In a multiple byte or string manner.

 o In a random byte−by−byte manner if the particular
 file−storage device allows it.

 o In a page−mapping or section−mapping manner for files on
 disk.

 Byte and string input/output are the most common types of operations.

 Generally, all programs perform I/O by moving bytes of data from one
 location to another. For example, programs can move bytes from one
 memory area to another, from memory to a disk file, and from the
 user’s terminal to memory. In addition, a program can map multiple
 512−word pages or 512−page sections from a disk file into memory or
 vice versa.

 Data transfer operations on files require four steps:

 1. Establishing a correspondence between a file and a Job File
 Number (JFN), because all files are referenced by JFNs.

 2. Opening the file to establish the data mode, access mode, and
 byte size and to set up the monitor tables that permit data
 to be accessed.

 3−1

 USING FILES

 3. Transferring data either to or from the file.

 4. Closing the file to complete any I/O, to update the directory
 if the file is on the disk, and to release the monitor table
 space used by the file.

 Some operations on files do not require the execution of all four
 steps above. Examples of these operations are: deleting or renaming
 a file, or changing the access code or account of a file. Although
 these operations do not require all four steps, they do require that
 the file has a JFN associated with it (step 1 above).

 It is possible for disk files on the DECSYSTEM−20 to be simultaneously
 read or written by any number of processes. To make sharing of files
 possible, all instances of opening a specific file in a specific
 directory cause a reference to the same data. Therefore, data written
 into a file by one process can immediately be seen by other processes
 reading the file.

 Access to files is controlled by the 6−digit (octal) file access code
 assigned to a file when it is created. This code indicates the types
 of access allowed to the file for the three classes of users: the
 owner of the file, the users with group access to the file, and all
 other users. (Refer to the TOPS−20 User’s Guide for more information
 on the file access codes.) If the user is allowed access to a file, he
 requests the type of access desired when opening the file with the
 OPENF% monitor call (refer to Section 3.4.1) in his program. If the
 access requested in the OPENF% call does not conflict with the current
 access to the file, the user is granted access. Essentially, the
 current access to the file is set by the first user who opens it.

 Thus, for a user to be granted access to a specific file, two
 conditions must be met:

 1. The file access code must allow the user to access the file
 in the desired manner (for example, read, write).

 2. The file must not be opened for a conflicting type of access.

 3.2 JOB FILE NUMBER

 The Job File Number (JFN) is one of the more important concepts in the
 operating system because it serves as the identifier of a particular
 file on a particular device during a process’ execution. It is a
 small integer assigned by the system upon a request from the user’s
 program. JFNs are usually assigned sequentially starting with 1.

 3−2

 USING FILES

 The JFN is valid for the job in which it is assigned and may be used
 by any process in the job. The system uses the JFN as an index into
 the table of files associated with the job and always assigns a JFN
 that is unique within the job. Even though a particular JFN within
 the job can refer to only one file, a single file can be associated
 with more than one JFN. This occurs when two or more processes are
 using the same file concurrently. In this case, each of the processes
 will probably have a different JFN for the file, but all of the JFNs
 will be associated with the same file.

 3.3 ASSOCIATING A FILE WITH A JFN

 In order to reference a file, the first step the user program must
 complete is to associate the specific file with a JFN. This
 correspondence is established with the GTJFN% (Get Job File Number)
 monitor call. One of the arguments to this call is the string
 representing the desired file. The string can be specified within the
 program (that is, come from memory) or can be accepted as input from
 the user’s terminal or from another file. The string can represent
 the complete specification for the file:

 dev:<directory>name.typ.gen;T(temporary);P(protection);A(account);
 (device dependent attributes)

 If you omit any fields of the specification, the system can provide
 values for all except the name field. Refer to the TOPS−20 User’s
 Guide for a complete explanation of the specification for a file.

 Table 3−1 lists the values the system will assign to fields not
 specified by the input string.

 Table 3−1: Standard System Values for File Specifications

 __

 Field Value
 __

 Device DSK:

 Directory Directory to which user is currently
 connected.

 Name No default; this field must be
 specified.

 Type Null.

 3−3

 USING FILES

 Generation number The highest existing generation number
 if the file is an input file. The
 next higher generation number if the
 file is an output file.

 Protection Protection of next lower generation of
 file, if one exists; otherwise,
 protection as specified in the
 directory.

 Account Account specified when user logged in.
 __

 If the string specified identifies a single file, the monitor returns
 a JFN that remains associated with that file until either the process
 releases the JFN or the job logs off the system. After the assignment
 of the JFN is complete, the user’s program uses the JFN in all
 references to that file.

 The user’s program can set up either the short or the long form of the
 GTJFN% monitor call. The long form of the GTJFN% call requires an
 argument block; the short form does not. The long form of GTJFN% has
 functions and flexibility not available in the short form of the call.
 The short form of GTJFN% allows a file specification to be obtained
 from a string in memory or from a file, but not from both. Fields not
 specified by the input are taken from the standard system values for
 those fields (refer to Table 3−1). This form is sufficient for most
 uses of the call. The long form allows a file specification to be
 obtained from both a string in memory and a file. If both are given
 as arguments, the string is used first, and then the file is used if
 more fields are needed to complete the specification. This form also
 allows the user’s program to specify nonstandard values to be used for
 fields not given and to request the assignment of a specific JFN.

 3.3.1 GTJFN% Monitor Call

 The GTJFN% monitor call assigns a JFN to the specified file. It
 accepts two words of arguments. These argument words are different
 depending on the form of GTJFN% being used. The user’s program
 indicates the desired GTJFN% form by setting bit 17(GJ%SHT) of AC1 to
 1 for the short form or by clearing bit 17(GJ%SHT) for the long form.

 3.3.1.1 Short Form of GTJFN% − The short form of the GTJFN% monitor
 call requires the following two words of arguments.

 3−4

 USING FILES

 0 17 18 35
 !===!
 AC1 ! flag bits ! default generation number !
 !===!

 0 35
 !===!
 AC2 ! source designator for file specification per !
 ! bit 16 (GJ%FNS) of AC1 !
 !===!

 The flag bits that can be specified in AC1 are described in Table 3−2.

 Table 3−2: GTJFN% Flag Bits

 __

 Bit Symbol Meaning
 __

 0 GJ%FOU The file specification given is to be
 assigned the next higher generation
 number. This bit indicates that a new
 version of a file is to be created and
 is normally set if the file is for
 output use.

 1 GJ%NEW The file specification given must not
 refer to an existing file (that is,
 the file must be a new file).

 2 GJ%OLD The file specification given must
 refer to an existing file. This bit
 has no effect on a parse−only JFN.
 (See bit GJ%OFG.)

 3 GJ%MSG One of the appropriate messages is to
 be printed after the file
 specification is obtained. The
 message is printed only if the user
 types the ESC key to end his file
 specification (that is, he is using
 recognition input).

 [NEW FILE]
 [NEW GENERATION]
 [OLD GENERATION]
 [OK] if GJ%CFM (bit 4) is off
 [CONFIRM] if GJ%CFM (bit 4) is on

 3−5

 USING FILES

 4 GJ%CFM Confirmation from the user will be
 required to verify that the file
 specification obtained is correct. To
 confirm the file specification, the
 user can press the RETURN key.

 5 GJ%TMP The file specified is to be a
 temporary file.

 6 GJ%NS Only the first file specification in a
 multiple logical name assignment is to
 be searched for the file.

 7 GJ%ACC The JFN specified is not to be
 accessed by inferior processes in this
 job. However, any process can access
 the file by acquiring a different JFN.
 To prevent the file from being
 accessed by other processes, the
 user’s program can set OF%RTD (bit 29)
 in the OPENF call (refer to Section
 3.4.1).

 8 GJ%DEL The file specified is not to be
 considered as deleted, even if it is
 marked as deleted.

 9−10 GJ%JFN These bits are off in the short form
 of the GTJFN call (refer to Section
 3.3.1.2 for their description).

 11 GJ%IFG The file specification given is
 allowed to have one or more of its
 fields specified with a wildcard
 character (* or %). This bit is used
 to process a group of files and is
 generally used for input files. The
 monitor verifies that at least one
 value exists for each field that
 contains a wildcard and assigns the
 JFN to the first file in the group.

 The monitor also verifies that fields
 not containing wildcards represent a
 new or old file according to the
 setting of GJ%NEW and GJ%OLD.

 12 GJ%OFG The JFN is to be associated with the
 given file specification string only
 and not to the actual file. The
 string may contain a wildcard
 character (* or %) in one or more of

 3−6

 USING FILES

 its fields. It is checked for correct
 punctuation between fields, but is not
 checked for the validity of any field.
 This bit allows a JFN to be associated
 with a file specification even if the
 file specification does not refer to
 an actual file. The JFN returned
 cannot be used to refer to an actual
 file (for example, cannot be used in
 an OPENF call) but can be used to
 obtain the original input string via
 the JFNS monitor call (refer to
 Section 3.7.2).

 13 GJ%FLG Flags are to be returned in the left
 half of AC1 on a successful return.

 14 GJ%PHY Logical names specified for the
 current job are to be ignored and the
 physical device is to be used.

 15 GJ%XTN This bit is off in the short form of
 the GTJFN call (refer to Section
 3.3.1.2 for its description).

 16 GJ%FNS The contents of AC2 are to be
 interpreted as follows:

 1. If this bit is on, AC2 contains an
 input JFN in the left half and an
 output JFN in the right half. The
 input JFN is used to obtain the
 file specification to be
 associated with the JFN. The
 output JFN is used to indicate the
 destination for printing the names
 of any fields being recognized.
 To omit either JFN, the user’s
 program must specify the symbol
 .NULIO (377777).

 2. If this bit is off, AC2 contains a
 pointer to a string in memory that
 specifies the file to be
 associated with the JFN.

 17 GJ%SHT This bit must be on (set) for the
 short form of the GTJFN% call; it must
 be off for the long form of the call.

 3−7

 USING FILES

 18−35 The generation number of the file
 (between 1 and 377777) or one of the
 following:

 0(.GJDEF) to indicate that the next
 higher generation number
 of the file is to be used
 if GJ%FOU (bit 0) is on,
 or to indicate that the
 highest existing
 generation number of the
 file is to be used if
 GJ%FOU is off. (This
 value is usually used in
 this field.)

 −1(.GJNHG) to indicate that the next
 higher generation number
 of the file is to be used
 if no generation number is
 supplied.

 −2(.GJLEG) to indicate that the
 lowest existing generation
 number of the file is to
 be used.

 −3(.GJALL) to indicate that all
 generation numbers (*) of
 the file are to be used
 and that the JFN is to be
 assigned to the first file
 in the group. (Bit GJ%IFG
 must be set.)
 __

 3−8

 USING FILES

 If the GTJFN% call is given with the appropriate flag bit set (GJ%IFG
 or GJ%OFG), the file specification given as input can have a wildcard
 character (either an asterisk or a percent sign) appearing in the
 directory, name, type, or generation number field. (The percent sign
 cannot appear in the generation number field.) The wildcard character
 is interpreted as matching any existing occurrence of the field. For
 example, the specification

 <LIBRARY>*.MAC

 identifies all the files with the file type .MAC in the directory
 named <LIBRARY>. The specification

 <LIBRARY>MYFILE.FO%

 identifies all the files in directory <LIBRARY> with the name MYFILE
 and a three−character file type in which the first two characters are
 .FO. Upon completion of the GTJFN call, the JFN returned is
 associated with the first file found in the group according to the
 following:

 o in numerical order by directory number

 o in alphabetical order by filename

 o in alphabetical order by file type

 o in ascending numerical order by generation number

 The GNJFN% (Get Next JFN) monitor call can then be given to assign the
 JFN to the next file in the group (refer to Section 3.7.3). Normally,
 a program that accepts wildcard characters in a file specification
 will successively reference all files in the group using the same JFN
 and not obtain another JFN for each one.

 If execution of the GTJFN% call is not successful because problems
 were encountered in performing the call, the JFN is not assigned and
 an error code is returned in the right half of AC1. The execution of
 the program continues at the instruction following the GTJFN% call.

 If execution of the GTJFN% call is successful, the JFN assigned is
 returned in the right half of AC1 and various bits are set in the left
 half, if flag bits 11, 12, or 13 were on in the call. (The bits
 returned on a successful call are described in Table 3−3.) If bit 11,
 12, or 13 was not on in the call, the left half of AC1 is zero. The
 execution of the program continues at the second instruction after the
 GTJFN% call.

 3−9

 USING FILES

 Table 3−3: Bits Returned on GTJFN% Call

 __

 Bit Symbol Meaning
 __

 0 GJ%DEV The device field of the file
 specification contains wildcard
 characters.

 1 GJ%UNT The unit field of the file
 specifications contains wildcard
 characters. This bit is never set
 because wildcard characters are not
 allowed in unit fields.

 2 GJ%DIR The directory field of the file
 specification contains wildcard
 characters.

 3 GJ%NAM The filename field of the file
 specification contains wildcard
 characters.

 4 GJ%EXT The file type field of the file
 specification contains wildcard
 characters.

 5 GJ%VER The generation number field of the
 file specification contains wildcard
 characters.

 6 GJ%UHV The file used has the highest
 generation number because a generation
 number of 0 was given in the call.

 7 GJ%NHV The file used has the next higher
 generation number because a generation
 number of 0 or −1 was given in the
 call.

 8 GJ%ULV The file used has the lowest
 generation number because a generation
 number of −2 was given in the call.

 9 GJ%PRO The protection field of the file
 specification was given.

 10 GJ%ACT The account field of the file
 specification was given.

 3−10

 USING FILES

 11 GJ%TFS The file specification is for a
 temporary file.

 12 GJ%GND Files marked for deletion are not
 considered when assigning JFNs in
 subsequent calls. This bit is set if
 GJ%DEL was not set in the call.

 13 GJ%NOD The node name field of the file
 specification was given.

 17 GJ%GIV Invisible files were not considered
 when assigning JFNs.
 __

 Examples of the short form of the GTJFN% monitor call are shown in the
 following paragraphs.

 The following sequence of instructions is used to obtain, from the
 user’s terminal, the specification of an existing file.

 MOVX AC1,GJ%OLD+GJ%FNS+GJ%SHT
 MOVE AC2,[.PRIIN,,.PRIOU]
 GTJFN%

 The bits specified for AC1 indicate that the file specification given
 must refer to an existing file (GJ%OLD), that the file specification
 is to be accepted from the input JFN in AC2 (GJ%FNS), and that the
 short form of the GTJFN% call is being used (GJ%SHT). Because the
 right half of AC1 is zero, the standard generation number algorithm
 will be used. In this GTJFN% call, the file with the highest existing
 generation number is used. Because GJ%FNS is set in AC1, the contents
 of AC2 are interpreted as containing an input JFN and an output JFN.
 In this example, the file specification is obtained from the terminal
 (.PRIIN).

 The following sequence of instructions is used to obtain, from the
 user’s terminal, the specification of an output file and to require
 confirmation from the user once the file specification has been
 obtained.

 MOVX AC1,GJ%FOU+GJ%MSG+GJ%CFM+GJ%FNS+GJ%SHT
 MOVE AC2,[.PRIIN,,.PRIOU]
 GTJFN%

 In this example, the bits specified for AC1 indicate that

 o the file obtained is to be an output file (GJ%FOU),

 o after the file specification is obtained, a message is to be
 typed (GJ%MSG),

 3−11

 USING FILES

 o the user is required to confirm the file specification that
 was obtained (GJ%CFM),

 o the file specification is to be obtained from the input JFN
 in AC2 (GJ%FNS),

 o the short form of the GTJFN% call is being used (GJ%SHT).

 Because the right half of AC1 is zero, the generation number given to
 the file will be one greater than the highest generation number
 existing for the file. The contents of AC2 are interpreted as
 containing an input JFN and an output JFN because GJ%FNS is set in
 AC1.

 The following sequence of instructions is used to obtain the name of
 an existing file from a location in the user’s program.

 MOVX AC1,GJ%OLD+GJ%SHT
 MOVE AC2,[POINT 7,NAME]
 GTJFN%
 .
 .
 .

 NAME:ASCIZ/MYFILE.TXT/

 The bits specified for AC1 indicate that the file obtained is to be an
 existing file (GJ%OLD) and that the short form of the GTJFN% call is
 being used (GJ%SHT). Since the right half of AC1 is zero, the file
 with the highest generation number will be used. Because GJ%FNS is
 not set, the contents of AC2 are interpreted as containing a pointer
 to a string in memory that specifies the file to be associated with
 the JFN. The setup of AC2 indicates that the string begins at
 location NAME in the user’s program. The file specification obtained
 from location NAME is MYFILE.TXT.

 An alternate way of specifying the same file is the sequence

 MOVX AC1,GJ%OLD+GJ%SHT
 HRROI AC2,[ASCIZ/MYFILE.TXT/]
 GTJFN%

 3.3.1.2 Long Form of GTJFN% − The long form of the GTJFN% monitor
 call requires the following two words of arguments:

 0 17 18 35
 !===!
 AC1 ! 0 ! address of argument table !
 !===!

 3−12

 USING FILES

 0 35
 !===!
 AC2 ! pointer to ASCIZ file specification string, or 0 !
 !===!

 The argument block for the long form is described in Table 3−4.

 Table 3−4: Long Form GTJFN% Argument Block

 __

 Word Symbol Meaning
 __

 0 .GJGEN Flag bits appear in the left half and
 generation number appears in the right
 half.

 1 .GJSRC An input JFN appears in the left half
 and an output JFN appears in the right
 half. To omit either JFN, the user’s
 program must specify the symbol .NULIO
 (377777).

 2 .GJDEV Pointer to ASCIZ string that specifies
 the device to be used when none is
 given. If this word is 0, DSK will be
 used.

 3 .GJDIR Pointer to ASCIZ string that specifies
 the directory to be used when none is
 given. If this word is 0, the user’s
 connected directory will be used.

 4 .GJNAM Pointer to ASCIZ string that specifies
 the filename to be used when none is
 given. If this word is 0, the input
 must specify the filename.

 5 .GJEXT Pointer to ASCIZ string that specifies
 the file type to be used when none is
 given. If this word is 0, a null type
 will be used.

 6 .GJPRO Pointer to ASCIZ string or 3B2+octal
 protection code. This word indicates
 the protection to be used when none is
 given. If this word is 0, the
 protection as specified in the
 directory will be used.

 3−13

 USING FILES

 7 .GJACT Pointer to ASCIZ string or 3B2+decimal
 account number. This word indicates
 the account to be used when none is
 given. If this word is 0, the account
 specified when the user logged in will
 be used.

 10 .GJJFN The JFN to assign to the file
 specification if flag bit GJ%JFN is
 set in word .GJGEN (word 0) of the
 argument block.

 11−17 Additional words allowed if flag bit
 GJ%XTN (bit 15) is set in word .GJGEN
 (word 0) of the argument block. These
 additional words are used when
 performing command input parsing and
 are described in the TOPS−20 Monitor
 Calls Reference Manual.
 __

 The flag bits accepted in the left half of .GJGEN (word 0) of the
 argument block are the same as those accepted in the short form of the
 GTJFN% call. The entire set of flag bits is listed in Table 3−2.

 The generation number values accepted in the right half of .GJGEN
 (word 0) of the argument block can be 0, −1, −2, −3, or a specified
 number, although 0 is the normal case. Refer to Bits 18−35 of Table
 3−2 for explanations of these values.

 If execution of the GTJFN% call is successful, the JFN assigned is
 returned in the right half of AC1 and various bits are set in the left
 half if flag bits 11, 12 or 13 were on in the call. Refer to Table
 3−3 for the explanations of the bits returned. Execution of the
 program continues at the second instruction following the call.

 If execution of the GTJFN call is not successful, the JFN is not
 assigned and an error code is returned in the right half of AC1. The
 execution of the program continues at the instruction following the
 GTJFN% call.

 The following sequence of instructions obtains a specification for an
 existing file from the user’s terminal, assigns the JFN to the next
 higher generation of that file, and specifies default fields to be
 used if the user omits a field when he gives his file specification.

 MOVEI AC1,JFNTAB
 SETZ AC2,
 GTJFN%
 .
 .
 .

 3−14

 USING FILES

 JFNTAB: GJ%FOU
 XWD .PRIIN,.PRIOU
 0
 POINT 7,[ASCIZ/TRAIN/] ;default directory
 0
 POINT 7,[ASCIZ/MEM/] ;default file type
 0
 0
 0

 The address of the argument table for the GTJFN% call (JFNTAB) is
 given in the right half of AC1. AC2 contains 0, which means no
 pointer to a string is given; thus, fields for the file specification
 will be taken only from the user’s terminal. The first word of the
 argument block contains a flag bit for the GTJFN% call. This bit
 (GJ%FOU) indicates that the next higher generation number is to be
 assigned to the file. The second word of the argument block indicates
 that the file specification is to be obtained from the user’s
 terminal, and any output generated because of the user employing
 recognition is to be printed on his terminal. If the user does not
 supply a directory name as part of his file specification, the
 directory <TRAIN> will be used. And if the user does not give a file
 type, the type MEM will be used. If the user omits other fields from
 his specification, the system standard value (refer to Table 3−1) will
 be used.

 3.3.1.3 Summary of GTJFN% − The GTJFN% monitor call is required to
 associate a JFN with a particular file. In most cases, the short form
 of the GTJFN% call is sufficient for establishing this association.
 However, the long form is more powerful because it provides the user’s
 program more control over the file specification that is obtained.
 The following summary compares the characteristics of the two forms of
 the GTJFN% monitor call.

 Short Form Long Form

 Assigns a JFN to a file. Assigns a JFN to a file.
 System decides the JFN User program may request
 to assign. a particular JFN.

 Accepts the file specification Accepts the file specification
 from a string in memory from a string in memory
 or a file. and a file.

 Uses standard system values Allows user−supplied values
 for fields not given to be used for fields not
 in the file given in the file
 specification. specification.

 3−15

 USING FILES

 3.4 OPENING A FILE

 Once a JFN has been obtained for a file, the user’s program must open
 the file in order to transfer data. The user’s program supplies the
 JFN of the file to be opened and a word of bits indicating the desired
 byte size, data mode, and access to the file.

 The desired access to the file is specified by a separate bit for each
 type of access. The file is successfully opened only if the desired
 access does not conflict with the current access to the file (refer to
 Section 3.1). For example, if the user requests both read and write
 access to the file, but write access is not allowed, then the file is
 not opened for this user. The allowed types of access to a file are:

 o Read access. The file can be read with byte, string, or
 random input.

 o Write access. The file can be written with byte, string, or
 random output.

 o Append access. The file can be written only with sequential
 byte or dump output, and the current byte pointer (refer to
 Section 3.5.1) cannot be changed. The initial position of
 the file pointer is at the end of the file.

 o Frozen access. The file can be concurrently accessed by at
 most one user writing the file, but by any number of users
 reading the file. This is the default access to a file.

 o Thawed access. The file can be accessed even if other users
 are reading and writing the file.

 o Restricted access. The file cannot be accessed if another
 user already has opened the file.

 o Unrestricted read access. The file can be read regardless of
 what other users might be doing with the file.

 3.4.1 OPENF% Monitor Call

 The OPENF% (Open File) monitor call opens a specified file. It
 requires the following two words of arguments.

 3−16

 USING FILES

 0 17 18 35
 !===!
 AC1 ! 0 ! JFN of file to be opened !
 !===!

 0 5 6 9 18 30 31 35
 !===!
 AC2 ! byte !data ! 0 ! access bits ! 0 !
 ! size !mode ! ! ! !
 !===!

 If the left half of AC1 is not 0, the contents of AC1 is interpreted
 as a pointer to a string, not as a JFN. If the user’s program
 requests bits returned in AC1 from the GTJFN% call, these bits must be
 cleared before executing the OPENF% call.

 The byte size (OF%BSZ) in AC2 specifies the number of bits in each
 byte of the file and can be between 1 and 36 (decimal). If this field
 is 0 a byte size of 36 (decimal) is assumed.

 The file data mode field (OF%MOD) usually has one of two values:

 Value Meaning

 0 Normal data mode of the file (that is, byte
 I/O). Dump I/O is illegal.

 17 Dump mode (that is, unbuffered word I/O).
 Byte I/O is illegal and the byte size is
 ignored.

 The access bits are described in Table 3−5.

 Table 3−5: OPENF% Access Bits

 __

 Bit Symbol Meaning
 __

 0−5 OF%BSZ Byte size (maximum of 36 decimal).

 6−9 OF%MOD Data mode in which to open file.

 18 OF%HER Halt on the occurrence of an I/O
 device or medium error during
 subsequent I/O to the file. If this
 bit is not set, a software interrupt
 is generated if a device or medium
 error occurs during subsequent I/O.

 3−17

 USING FILES

 19 OF%RD Allow read access.

 20 OF%WR Allow write access.

 21 OF%EX Allow execute access.

 22 OF%APP Allow append access.

 23 OF%RDU Allow unrestricted read access.

 24 Reserved for Digital.

 25 OF%THW Allow thawed access. If this bit is
 not set, the file is opened for frozen
 access.

 26 OF%AWT Block (that is, temporarily suspend)
 the program until access to the file
 is permitted.

 27 OF%PDT Do not update the access dates of the
 file.

 28 OF%NWT Return an error if access to the file
 cannot be permitted.

 29 OF%RTD Allow access to the file to only one
 process (that is, restricted access).

 30 OF%PLN Do not check for line numbers in the
 file.

 31 OF%DUD Suppress system updating of modified
 pages in memory to thawed files on
 disk unless CLOSF or UFPGS issued.

 32 OF%OFL Open device even if off−line.

 33 OF%FDT Force update of .FBREF (last read) in
 FDB and increment RH of .FBCNT (number
 of references).

 34 OF%RAR Wait if file off−line.
 __

 If bits OF%AWT and OF%NWT are both off, an error code is returned if
 access to the file cannot be permitted (that is, the action taken is
 identical to OF%NWT being on).

 3−18

 USING FILES

 If execution of the OPENF% monitor call is successful, the file is
 opened, and the execution of the program continues at the second
 instruction after the OPENF% call.

 If execution of the OPENF% call is not successful, the file is not
 opened, and an error code is returned in AC1. The execution of the
 program continues at the next instruction after the OPENF% call.

 Two samples of the OPENF% call follow.

 The sequence of instructions below opens a file for input.

 HRRZ AC1,JFNEXT
 MOVX AC2,FLD(44,OF%BSZ)+OF%RD+OF%PLN
 OPENF%

 The JFN of the file to be opened is contained in the location
 indicated by the address in AC1 (JFNEXT). The bits specified for AC2
 indicate that the byte size is one word FLD(44,OF%BSZ), that read
 access is being requested to the file (OP%RD), and that no check will
 be made for line numbers in the file; that is, the line numbers will
 not be discarded (OF%PLN). Because bit OF%THW is not set, the file
 can be accessed for reading by any number of processes.

 The following sequence of instructions can be used to open a file for
 output.

 MOVE AC1,JFN
 MOVX FLD(7,OF%BSZ)+OF%HER+OF%WR+OF%AWT
 OPENF%

 The right half of AC1 contains the address that has the JFN of the
 file to be opened. The bits specified for AC2 indicate that the byte
 size is 7−bit bytes FLD(7,OF%BSZ), that the program is to be halted
 when an I/O error occurs in the file (OF%HER), that write access is
 being requested to the file (OF%WR), and that the program is to be
 blocked if access cannot be granted (OF%AWT). Because bit OF%THW is
 not set, if another user has been granted write access to the file,
 this user’s program will be blocked until access can be granted.

 3.5 TRANSFERRING DATA

 Data transfers of sequential bytes are the most common form of
 transfer and can be used with any file. For disk files, nonsequential
 bytes and entire pages can also be transferred.

 3−19

 USING FILES

 3.5.1 File Pointer

 Every open file is associated with a pointer that indicates the last
 byte read from or written to the file. When the file is initially
 opened, this pointer is normally positioned before the beginning of
 the file so that the first data operation will reference the first
 byte in the file. The pointer is then advanced through the file as
 data is transferred. However, if the file is opened for append−only
 access (bit OF%APP set in the OPENF% call), the pointer is positioned
 after the last byte of the file. This allows the first write
 operation to append data to the end of the file.

 For disk files, the pointer may be repositioned arbitrarily throughout
 the file, such as in the case of nonsequential data transfers. When
 the pointer is positioned beyond the end of the file, an end−of−file
 indication is returned when the program attempts a read operation
 using byte input. When the program performs a write operation beyond
 the end of the file using byte output, the end−of−file indicator is
 updated to point to the end of the new data. However, if the program
 writes pages beyond the end of the file with the PMAP% monitor call
 (refer to section 3.5.6), the byte count is not updated. Therefore,
 it is possible for a file to contain pages of data beyond the
 end−of−file indicator. To allow sequential I/O to be performed later
 to the file, the program should update the byte count before closing
 the file. (Refer to the CHFDB% monitor call description in the
 TOPS−20 Monitor Calls Reference Manual.)

 3.5.2 Source and Destination Designators

 Because I/O operations occur by moving data from one location to
 another, the user’s program must supply a source and a destination for
 any I/O operation. The most commonly−used source and destination
 designators are the following:

 1. A JFN associated with a particular file. The JFN must be
 previously obtained with the GTJFN% or GNJFN% monitor call
 before it can be used.

 2. The primary input and output designators .PRIIN and .PRIOU,
 respectively (refer to Section 2.2). These designators
 should be used when referring to the terminal.

 3. A byte pointer to the beginning of the string of bytes in the
 program’s address space that is being read or written. The
 byte pointer can take one of two forms:

 o A word with a −1 in the left half and an address in the
 right half. This form is used to designate a 7−bit ASCIZ
 string starting in the left−most byte of the specified
 address. A word in this form is functionally equivalent
 to a word assembled by the POINT 7,ADR pseudo−op.

 3−20

 USING FILES

 o A full word byte pointer with a byte size of 7 bits.

 Most monitor calls dealing with strings deal specifically with ASCII
 strings. Normally, ASCII strings are assumed to terminate with a byte
 of 0 (that is, are assumed to be ASCIZ strings). However some calls
 optionally accept an explicit byte count and/or terminating byte.
 These calls are generally ones that handle non−ASCII strings and byte
 sizes other than 7 bits.

 3.5.3 Transferring Sequential Bytes

 The BIN% (Byte Input) and BOUT% (Byte Output) monitor calls are used
 for sequential byte transfers. The BIN% call takes the next byte from
 the given source and places it in AC2. The BOUT% call takes the byte
 from AC2 and writes it to the given destination. The size of the byte
 is that given in the OPENF% call for the file.

 The BIN% monitor call accepts a source designator in AC1, and upon
 successful execution of the call, the byte is right−justified in AC2.
 If execution of the call is not successful, an illegal instruction
 trap is generated. Control returns to the user’s program at the
 instruction following the BIN% call. If the end of the file is
 reached, AC2 contains 0 instead of a byte. The program can process
 this end−of−file condition if a jump style error return is the next
 instruction following the BIN% call.

 The BOUT% monitor call accepts a destination designator in AC1 and the
 byte to be output, right−justified in AC2. Upon successful execution
 of the call, the byte is written to the destination. If execution of
 the call is not successful, an illegal instruction trap is generated
 Control returns to the user’s program at the instruction following the
 BOUT% call.

 The following sequence shows the transferring of bytes from an input
 file to an output file. The bytes are read from the file indicated by
 INJFN and written to the file indicated by OUTJFN.

 LOOP: MOVE 1,INJFN ;get source designator from INJFN
 BIN% ;read a byte from the source
 ERJMP DONE ;check for end of file, if 0
 LOOP2: MOVE 1,OUTJFN ;get destination from OUTJFN
 BOUT% ;write the byte to the destination
 JRST LOOP ;continue until 0 byte is found
 DONE: GTSTS% ;obtain status of source
 TXNN 2,GS%EOF ;test for end of file
 JRST NOTYET ;no, test for 0 in input file
 : ;yes, process end of file condition
 NOTYET:MOVEI 2,0 ;0 in input file
 JRST LOOP2

 3−21

 USING FILES

 3.5.4 Transferring Strings

 The SIN% (String Input) and SOUT% (String Output) monitor calls are
 used for string transfers. These calls transfer either a string of a
 specified number of bytes or a string terminated with a specific byte.

 The SIN% monitor call reads a string from the specified source into
 the program’s address space. The call accepts four words of arguments
 in AC1 through AC4.

 AC1: source designator

 AC2: pointer to area in program’s address space

 AC3: count of number of bytes to read, or 0

 AC4: byte on which to terminate input (optional)

 The contents of AC3 are interpreted as the number of characters to
 read.

 o If AC3 is 0, then reading continues until a 0 byte is found
 in the input.

 o If AC3 is positive, then reading continues until either the
 specified number of bytes is read, or a byte equal to that
 given in AC4 is found in the input, whichever occurs first.

 o If AC3 is negative, then reading continues until minus the
 specified number of bytes is read.

 The contents of AC4 needs to be specified only if the contents of AC3
 is a positive number. The byte in AC4 is right−justified.

 The input is terminated when one of the following occurs:

 o The byte count becomes zero.

 o The specified terminating byte is reached.

 o The end of the file is reached.

 o An error occurs during the transfer (for example, a data
 error occurs).

 Control returns to the user’s program at the instruction following the
 SIN% call. If an error occurs (including the end of the file is
 reached), an illegal instruction trap is generated. In addition,
 several locations are updated:

 3−22

 USING FILES

 1. The position of the file’s pointer is updated for subsequent
 I/O to the file.

 2. The pointer to the string in AC2 is updated to reflect the
 last byte read or, if AC3 contained 0, the last nonzero byte
 read.

 3. The count in AC3 is updated, if pertinent, by subtracting the
 number of bytes actually read from the number of bytes
 requested to be read (that is, the count is updated toward
 zero). From this count, the user’s program can determine the
 number of bytes actually transferred.

 The SOUT% monitor call writes a string from the program’s address
 space to the specified destination. Like the SIN% call, this call
 accepts four words of arguments in AC1 through AC4.

 AC1: destination designator

 AC2: pointer to string to be written

 AC3: count of the number of bytes to write, or 0

 AC4: byte on which to terminate output (optional)

 The contents of AC3 and AC4 are interpreted in the same manner as they
 are in the SIN% monitor call.

 The transfer is terminated when one of the following occurs.

 o The byte count becomes zero.

 o The specified terminating byte is reached. This terminating
 byte is written to the destination.

 o An error occurs during the transfer.

 Control returns to the user’s program at the instruction following the
 SOUT% call. If an error occurs, an illegal instruction trap is
 generated. In addition, the position of the file’s pointer, the
 pointer to the string in AC2, and the count in AC3, if pertinent, are
 also updated in the same manner as in the SIN% monitor call.

 The following code sequence shows transferring a string from an input
 file to an output file. The procedure is the same as at the end of
 Section 3.5.3, using SIN% and SOUT% calls instead of BIN% and BOUT%.

 LOOP: MOVE 1,INJFN ;get source from INJFN
 HRROI 2,BUF128 ;pointer to string to read into (128
 ;word buffer)

 3−23

 USING FILES

 MOVNI 3,^D128*5 ;input a maximum of 640 bytes
 SIN% ;transfer until end of buffer or end of
 ;file
 ERCAL EOFQ ;error occurred

 ADDI 3,^D128*5 ;determine negative number of
 ;bytes transferred
 MOVN 3,3 ;convert to positive
 MOVE 1,OUTJFN ;get destination from OUTJFN
 HRROI 2,BUF128 ;pointer to string to write from
 SOUT% ;transfer as many bytes as read
 EOFQ: MOVE 1,INJFN
 GTSTS% ;obtain status of source
 TXNN 2,GS%EOF ;test for end of file
 RET ;no, continue copying

 3.5.5 Transferring Nonsequential Bytes

 As discussed in Section 3.5.3, the BIN% and BOUT% calls transfer bytes
 sequentially, starting at the current position of the file’s pointer.
 The RIN% (Random Input) and ROUT% (Random Output) monitor calls allow
 the user’s program to specify where the transfer will begin by
 accepting a byte number within the file. The size of the byte is the
 size given in the OPENF% call for the file. The RIN% and ROUT% calls
 can only be used when transferring data to or from disk files.

 The RIN% monitor call takes a byte from the specified location in the
 file and places it into the accumulator. The call accepts the JFN of
 the file in AC1 and the byte number within the file in AC3. Upon
 successful completion of the call, the byte is right−justified in AC2,
 and the file’s pointer is updated to point to the byte following the
 one just read. If an error occurs, an illegal instruction trap is
 generated. Control returns to the user’s program at the instruction
 following the RIN% call.

 The ROUT% monitor call takes a byte from the accumulator and writes it
 into the specified location in the file. The call accepts the JFN of
 the file in AC1, the byte to write right−justified in AC2, and the
 byte number within the file in AC3. Upon successful completion of the
 call, the byte is written into the specified byte in the file, and the
 file’s pointer is updated to point to the byte following the one just
 written. If an error occurs, an illegal instruction trap is
 generated. Control returns to the user’s program at the instruction
 following the ROUT% call.

 3.5.6 Mapping Pages

 Up to this point, monitor calls have been presented for transferring

 3−24

 USING FILES

 bytes and strings of data. The next call to be discussed is used to
 transfer entire pages of data between a file and a process.

 Both files and process address spaces are divided into pages of
 512(decimal) words. A page within a file can be identified by one
 word, where the JFN of the file is in the left half and the page
 number within the file is in the right half. A page within a process
 address space can also be identified by one word, where the identifier
 of the process (refer to Section 5.3) is in the left half and the page
 number within the process’ address space is in the right half. Each
 one−word identifier for the pages in the process address space is
 placed in what is called the process page map. When identifiers for
 file pages are placed in the process page map, references to the
 process page actually refer to the file page. The following diagram
 illustrates a process map that has identifiers for pages from two
 files.

 File 1

 | |
 Process Map | |
 _____________ | |
 | | | | |
 | | | |
 |−−−−−−−−−−−−−| |−−−−−−−−−−|
 |JFN1 |Page 1|−−−−−−−−−−−−−−>| Page 1 |
 |−−−−−−−−−−−−−| |−−−−−−−−−−|
 | | | |
 | | | |
 |−−−−−−−−−−−−−| |__________|
 | |
 | |
 | | File 2
 | | __________
 | | | | |
 | | | |
 |−−−−−−−−−−−−−| |−−−−−−−−−−|
 |JFN2 |Page 2|−−−−−−−−−−−−−−>| Page 2 |
 |−−−−−−−−−−−−−| |−−−−−−−−−−|
 | | | |
 | | | |
 |_____________| | |
 | |
 | |
 |__________|

 The PMAP% (Page Mapping) monitor call is used to map one or more
 entire pages from a file to a process (for input), from a process to a
 file (for output), or from one process to another process. In
 general, this call changes the entries in the process map by accepting

 3−25

 USING FILES

 file page identifiers and process page identifiers as arguments.
 Mapping pages between a file and a process is described below; mapping
 pages between two processes is described in Chapter 5.

 3.5.6.1 Mapping File Pages to a Process − This use of the PMAP% call
 changes the map of the process so that references to pages in the
 process reference pages in a file. This does not actually cause data
 to be transferred; it simply changes the contents of the map. Later
 when changes are made to the actual page in the process, the changes
 will also be made to the page in the file, if write access has been
 specified for the file.

 Note that you cannot map file pages to pages in a process section that
 does not exist in the the process map. If you use PMAP% to input file
 pages to pages in a nonexistent section of a process, the monitor
 generates an illegal instruction trap.

 In addition, you can map one or more file sections (of 512 pages each)
 into a process. See Section 8.3.1 for details.

 The PMAP% call accepts three words of arguments in AC1 through AC3.

 AC1: JFN of the file in the left half, and the page number in
 the file in the right half

 AC2: process identifier (refer to Section 5.3) in the left
 half, and page number in the process in the right half

 AC3: repetition count and access

 The repetition count and access bits that can be specified in AC3 are
 described in Table 3−6.

 Table 3−6: PMAP% Access Bits

 __

 Bit Symbol Meaning
 __

 0 PM%CNT Repeat the mapping operation the number of
 times specified by the right half of AC3. The
 file page number and the process page number
 are incremented by 1 each time the operation
 is performed.

 2 PM%RD Allow read access to the page.

 3 PM%WR Allow write access to the page.

 3−26

 USING FILES

 4 PM%EX Reserved.
 The symbol PM%RWX can be used to set B2−4.

 5 PM%PLD Preload page being mapped (move the page
 immediately instead of waiting until it is
 referenced).

 9 PM%CPY Create a private copy of the page if the
 process writes into the page. This is called
 copy−on−write and causes the map to be changed
 so that it identifies the copy instead of the
 original. Write access is allowed to the copy
 even if it was not allowed to the original.
 This allows a process to change a page of data
 without changing the data for other processes
 that have also mapped the page.

 10 PM%EPN Bits 18−35 of AC2 contain extended (18−bit)
 process page number. If the section
 containing the page does not exist, a private
 section is created.

 11 PM%ABT Unmap page and discard (abort) changed
 contents.

 18−35 PM%RPT The number of times to repeat the mapping
 operation if bit 0(PM%CNT) is set.
 __

 With this use of the PMAP% call, the present contents of the page in
 the process are removed. If the page in the file is currently
 nonexistent, it will be created when it is written.

 This use of the PMAP% call is valid only if the file is opened for at
 least read access. If write access is requested in the PMAP% call, it
 is not granted unless it was also specified in the OPENF% call when
 the file was opened.

 A file cannot be closed while any of its pages are mapped into any
 process. Thus, before a file is closed, its pages must be unmapped
 (refer to Section 3.5.6.3).

 After execution of the PMAP% call, control returns to the user’s
 program at the instruction following the call. If an error occurs, an
 illegal instruction trap is generated.

 3.5.6.2 Mapping Process Pages to a File − This use of the PMAP% call
 actually transfers data by moving the specified page in the process to
 the specified page in the file. The process map for the page is now

 3−27

 USING FILES

 empty. Both the page in the process and the page in the file must be
 private; that is, no other process can have the page mapped into its
 address space. The ownership of the process page is transferred to
 the file page. The previous contents of the page in the file are
 deleted.

 The three words of arguments are as follows:

 AC1: process identifier (refer to Section 5.3) in the left
 half, and page number in the process in the right half

 AC2: JFN of the file in the left half, and the page number in
 the file in the right half

 AC3: repetition count and access (refer to Section 3.5.6.1)

 The access requested in the PMAP% call is granted only if it does not
 conflict with the access specified in the OPENF% call when the file
 was opened.

 This use of the PMAP% call does not automatically update the files
 byte count and the byte size. To allow the file to be read later with
 sequential I/O monitor calls, the program should update the file’s
 byte count and the byte size. (Refer to the CHFDB% monitor call in
 the TOPS−20 Monitor Calls Reference Manual).

 3.5.6.3 Unmapping Pages in a Process − As stated previously, a file
 cannot be closed if any of its pages are mapped in any process. To
 unmap a file’s pages from a process, the program must execute the
 SMAP% call, or the following form of the PMAP% call:

 AC1: −1

 AC2: process identifier in the left half, and page number in
 the process in the right half.

 AC3: the repeat count for the number of pages to remove from
 the process (refer to Section 3.5.6.1).

 3.5.7 Mapping File Sections to a Process

 A section of memory is a unit of 512 pages of process address space.
 File sections also contain 512 pages. The first page of each file
 section has a page number that is an integral multiple of 512. Like
 memory pages, sections can be mapped from one process to another, from
 a process to itself, or from a file to a process. Chapter 8 describes
 the SMAP% call completely.

 3−28

 USING FILES

 The SMAP% (Section Mapping) monitor call is similar to the PMAP% call.
 The SMAP% call maps one or more sections from a file to a process (for
 input), or from one process to another process. To map a process
 section to a file, you must use the PMAP% call as described in Chapter
 5 to map each page.

 Mapping a file section to a process section with SMAP% does not cause
 data to move from the disk to memory. Instead, SMAP% changes the
 contents of the process memory map so that the process section pointer
 points to a file section. The monitor transfers data only when your
 program references a memory page to which a file page is mapped.

 To map a file section to a process section, SMAP% requires three
 arguments:

 AC1: source identifier: a JFN in the left half, and a file
 section number in the right half. If several contiguous
 sections are to be mapped, the number in the right half is
 that of the first section in the group of contiguous
 sections.

 AC2: destination identifier: process identifier in the left
 half, and a process section number in the right half. If
 several contiguous sections are to be mapped, the number
 in the right half is the number of the first section into
 which SMAP% maps a file section.

 AC3: flags that control access to the process section in the
 left half, and, in the right half, the number of sections
 to map into the process. The number of sections to map
 cannot be less than 1 nor more than 32 (decimal).

 The flags in the left half of AC3 are described in Table 3−7.

 Table 3−7: SMAP% Access Bits

 __

 Bit Symbol Meaning
 __

 2 SM%RD Allow read access.

 3 SM%WR Allow write access.

 4 SM%EX Allow execute access.

 6 SM%IND Map the destination section using an indirect
 section pointer.
 __

 3−29

 USING FILES

 3.6 CLOSING A FILE

 Once data has been transferred to or from a file, the user’s program
 must close the file. When a file is closed, the system automatically
 performs the following:

 1. Updates the directory information for the file. For example,
 for a file to which sequential bytes had been written, the
 byte size and byte count are updated when the file is closed.

 2. Releases the JFN associated with the file. However, the
 user’s program can request to close the file, but retain the
 JFN assignment. This is useful if the program plans to
 reopen the same file later, but does not want to execute
 another GTJFN% call.

 3.6.1 CLOSF% Monitor Call

 The CLOSF% (Close File) monitor call closes either the specified file
 or all files that are opened for the process executing the call. The
 CLOSF% call accepts one word of arguments in AC1 − flag bits in the
 left half and the JFN of the file to be closed in the right half. The
 flag bits are described in Table 3−8.

 Table 3−8: CLOSF% Flag Bits

 __

 Bit Symbol Meaning
 __

 0 CO%NRJ Do not release the JFN from the file.

 6 CZ%ABT Abort any output operations currently being
 done. That is, close the file but do not
 perform normal cleanup operations (for example,
 do not output any data remaining in the
 buffers). If output to a new disk file that has
 not been closed is aborted, the file is closed
 and then deleted.

 7 CS%NUD Do not update the copy of the directory on the
 disk (refer to the CHFDB% description in the
 TOPS−20 Monitor Calls Reference Manual for more
 information).
 __

 If the contents of AC1 is −1, all files that are opened for this
 process are closed.

 3−30

 USING FILES

 If the execution of the CLOSF% call is successful, the specified file
 is closed, and the JFN associated with the file is released if CO%NRJ
 was not set in the call. The execution of the user’s program
 continues at the second location after the CLOSF% call.

 If the execution of the CLOSF% call is not successful, the file is not
 closed and an error code is returned in the right half of AC1. The
 execution of the user’s program continues at the instruction following
 the CLOSF% call.

 The following sequence illustrates the closing of two files.

 CLOSIF: HRRZ 1,INJFN ;obtain input JFN
 CLOSF% ;close input file
 ERJMP FATAL ;if error, print message and stop
 CLOSOF: HRRZ 1,OUTJFN ;obtain output JFN
 CLOSF% ;close output file
 ERJMP FATAL ;if error, print message and stop

 3.7 ADDITIONAL FILE I/O MONITOR CALLS

 3.7.1 GTSTS% Monitor Call

 The GTSTS% (Get Status) monitor call obtains the status of a file.
 This call accepts one argument word − the JFN of the file in the right
 half of the AC1. The left half of AC1 is zero.

 Control always returns to the user’s program at the instruction
 following the GTSTS% call. Upon return, appropriate bits reflecting
 the status of the specified JFN are set in AC2. These bits, and their
 meanings, are described in Table 3−9. Note that if the JFN is illegal
 or unassigned, bit 10 (GS%NAM) will not be set.

 Table 3−9: Bits Returned on GTSTS% Call

 __

 Bit Symbol Meaning
 __

 0 GS%OPN The file is open. If this bit is not
 set, the file is not open.

 1 GS%RDF If the file is open (for example,
 GS%OPN is set), it is open for read
 access.

 3−31

 USING FILES

 2 GS%WRF If the file is open, it is open for
 write access.

 3 GS%XCF File is open for execute access.

 4 GS%RND If the file is open, it is open for
 non−append access (that is, its
 pointer can be reset).

 5−6 Reserved for Digital.

 7 GS%LNG File has pages in existence beyond
 page number 511.

 8 GS%EOF The last read operation to the file
 was at the end of the file.

 9 GS%ERR The file may be in error (for example,
 the bytes read may be erroneous).

 10 GS%NAM A file specification is associated
 with this JFN. This bit will not be
 set if the JFN is in any way illegal.

 11 GS%AST One or more fields of the file
 specification associated with this JFN
 contain a wildcard character.

 12 GS%ASG The JFN is currently being assigned
 (that is, a process other than the one
 executing the GTSTS call is assigning
 this JFN).

 13 GS%HLT An I/O error is considered to be a
 terminating condition for this JFN.
 That is, the OPENF% call for this JFN
 had bit OF%HER set.

 14−16 Reserved for Digital.

 17 GS%FRK Access to the file is restricted to
 only one process.

 18 GS%PLN If on, file line numbers are passed
 during input; if zero, line numbers
 are stripped before input.

 19−31 Reserved for Digital.

 32−35 GS%MOD The data mode of the file (refer to
 the OPENF% call).

 3−32

 USING FILES

 Value Symbol Meaning

 0 .GSNRM Normal (sequential) I/O
 1 .GSSMB Small buffer mode
 10 .GSIMG Image (binary) I/O
 17 .GSDMP Dump I/O
 __

 An example of the GTSTS% call is shown in the first program in Section
 3.9.

 3.7.2 JFNS% Monitor Call

 The JFNS% (JFN to String) monitor call returns the file specification
 currently associated with the specified JFN. The call accepts three
 words of arguments in AC1 through AC3.

 AC1: destination designator where the file specification
 associated with the JFN is to be written. This
 specification is an ASCIZ string.

 AC2: JFN or pointer to string (see below)

 AC3: format to be used when returning the specification (see
 below)

 The contents of AC1 can be any valid destination designator (refer to
 Section 3.5.2).

 The contents of AC2 can be one of two formats. The first format is a
 word with either flag bits or 0 in the left half and the JFN in the
 right half. The bits that can be given in the left half of AC2 are
 the ones returned from the GTJFN% call (refer to Table 3−3). When the
 left half of AC2 is nonzero (that is, contains the bits returned from
 the GTJFN% call), the string returned will contain wildcard characters
 for appropriate fields and 0, −1, or −2 as a generation number if the
 corresponding bit is on in the JFNS% call. When the left half of AC2
 is 0, the string returned is the exact specification for the file (for
 example, wildcard characters are not returned for any fields). If the
 JFN is associated only with a file specification and not with an
 actual file (that is, bit GJ%OFG was set in the GTJFN% call), the
 string returned will contain null fields for unspecified fields and
 the actual values for specified fields. The second format allowed for
 AC2 is a pointer to the string in the program’s address space that is
 to be returned upon execution of the call. Refer to the TOPS−20
 Monitor Calls Reference Manual for the explanation of this format.

 3−33

 USING FILES

 The contents of AC3 specify the format in which the specification is
 written to the destination. Bits 0 through 20 are divided into 3−bit
 bytes, each byte representing a field in the file specification. The
 value of the byte indicates the format for that field. The possible
 values are:

 Value Symbol Meaning

 0 .JSNOF Do not return this field when returning the
 file specification.

 1 .JSAOF Always return this field when returning the
 file specification.

 2 .JSSSD Suppress this field if it is the standard
 system value for this field (refer to Table
 3−1).

 If the contents of AC3 is zero, the file specification is written in
 the format

 dev:<directory>name.typ.gen;T

 with fields the same as the standard system value (see Table 3−1) not
 returned and protection and account fields returned only if bit 9 and
 bit 10 in AC2 are on, respectively. The temporary attribute (;T) is
 returned only if the file is temporary.

 Table 3−10 describes the bits that can be set in AC3.

 Table 3−10: JFNS% Format Options

 __

 Bit Symbol Meaning
 __

 0 JS%NOD Print node name if node name is
 present.

 1−2 JS%DEV Format for device field.

 3−5 JS%DIR Format for directory field.

 6−8 JS%NAM Format for filename field. A value of
 2 (that is, bit 7 set) for this field
 is illegal.

 9−11 JS%TYP Format for file type field. A value
 of 2 (that is, bit 10 set) for this
 field is illegal.

 3−34

 USING FILES

 12−14 JS%GEN Format for generation number field.

 0−14 JS%SPC Output for all file specification
 fields named above. This field should
 have the same bits set as would be set
 in the fields above. (See B35
 (JS%PAF) below.)

 15−17 JS%PRO Format for protection field.

 18−20 JS%ACT Format for account field.

 21 JS%TMP Return temporary file indication ;T if
 the file specification is for a
 temporary file.

 22 JS%SIZ Return size of file in pages (see
 below).

 23 JS%CDR Return creation date of file (see
 below).

 24 JS%LWR Return date of last write operation to
 file (see below).

 25 JS%LRD Return date of last read operation
 from file (see below).

 26 JS%PTR AC2 contains a pointer to the string
 containing the field to be returned
 (refer to the TOPS−20 Monitor Calls
 Reference Manual for a description of
 this use of the JFNS% call).

 27 JS%ATR Return file specification attributes
 if appropriate.

 28 JS%AT1 Return specification attribute
 referenced in AC4.

 29 JS%OFL Return the "OFF−LINE" attribute.

 30−31 Reserved for Digital.

 32 JS%PSD Punctuate the size and date fields
 (see below) in the file specification
 returned.

 33 JS%TBR Place a tab before all fields returned
 (that is, fields whose value is given
 as 1 in the 3−bit field) in the file
 specification, except for the first
 field.

 3−35

 USING FILES

 34 JS%TBP Place a tab before all fields that may
 be returned (that is, fields whose
 value is given as 1 or 2 in the 3−bit
 field) in the file specification,
 except for the first field.

 35 JS%PAF Punctuate all fields (see below)
 returned in the file specification
 from the device field through the ;T
 field.

 If bits 32 through 35 are not set, no
 punctuation is used between the
 fields.
 __

 The punctuation used on each field is shown below.

 dev:<directory>name.typ.gen;A(account);P(protection);T(temporary)
 ,size,creation date,write date,read date

 Refer to Section 1.2.2 for information on error returns.

 3.7.3 GNJFN% Monitor Call

 Occasionally a program may be written to perform similar operations on
 a group of files instead of only on one file. However, the program
 should not require the user to give a file specification for each
 file. Because the GTJFN% call associates a JFN with only one file at
 a time, the program needs a method of assigning a JFN to all the files
 in the group. By using the GTJFN% call to initially obtain the JFN
 and the GNJFN% call to assign the same JFN to each subsequent file in
 the group, a program can accept a specification for a group of files
 and process each file in the group individually. After the user gives
 the initial file specification, the program requires no additional
 input.

 Before an example showing the interaction of these two calls is given,
 a description of the GNJFN% (Get Next JFN) monitor call is
 appropriate.

 The GNJFN% monitor call assigns a JFN to the next file in a group of
 files that have been specified with wildcard characters. The next
 file is determined by searching the directory in the order described
 in Section 3.3.1.1 using the current file as the first item. This
 call accepts one argument word in AC1 − the flags returned from the
 GTJFN% call in the left half and the JFN of the current file in the
 right half. In other words, the information returned in AC1 from the
 GTJFN% call is given as an argument to the GNJFN% call. Therefore,
 the program must save this information for use with the GNJFN% call.

 3−36

 USING FILES

 If execution of the GNJFN% call is successful, the same JFN is
 assigned to the next file in the group. The left half of AC1 contains
 various flags and the right half contains the JFN. The execution of
 the program continues at the second instruction after the GNJFN% call.

 Table 3−11 describes the bits that can be returned in AC1 on a
 successful GNJFN% call.

 Table 3−11: GNJFN% Return Bits

 __

 Bit Symbol Meaning
 __

 13 GN%STR A change in structure occurred between
 the previous file and this file.

 14 GN%DIR A change in directory occurred between
 the previous file and this file.

 15 GN%NAM A change in filename occurred between
 the previous file and this file.

 16 GN%EXT A change in file type occurred between
 the previous file and this file. If
 GN%NAM is on, this bit will also be on
 because the system considers two files
 with different filenames but with the
 same file type as a change in both the
 name and type.
 __

 If execution of the GNJFN% call is not successful, an error code is
 returned in the right half of AC1. Conditions that can cause an error
 return are:

 1. The file currently associated with the JFN must be closed,
 and it is not. This means that the program must execute a
 CLOSF% call (with CO%NRJ set to retain the JFN) before
 executing a GNJFN% call.

 2. There are no more files in this group. This return occurs on
 the first GNJFN% call after all files in the group have been
 stepped through. The JFN is released when there are no more
 files. (Note: This error may occur if the file currently
 associated with the JFN is deleted or renamed.)

 3−37

 USING FILES

 The execution of the program continues at the next instruction after
 the GNJFN% call.

 Consider the following situation. The user wants to write a program
 that will accept from his terminal a specification for a group of
 files and then perform an operation on each file individually without
 requiring additional input. Assume the user’s directory <TRAIN>
 contains the following files:

 FIRST.MAC.1
 FIRST.REL.1
 SECOND.REL.1
 THIRD.EXE.1

 As discussed in Section 3.3.1.1, a group of files can be given to the
 GTJFN call by supplying a specification that contains wildcard
 characters in one or more of its fields. Thus, the specification

 <TRAIN>*.*

 would refer to all four files in the user’s directory <TRAIN>.

 In his program, the user includes a GTJFN% call that will accept the
 above specification.

 The call is

 MOVX AC1,GJ%OLD+GJ%IFG+GJ%FLG+GJ%FNS+GJ%SHT
 MOVE AC2,[.PRIIN,,.PRIOU]
 GTJFN%

 and indicates that

 1. The file specification given must refer to an existing file
 (GJ%OLD).

 2. The file specification given is allowed to contain wildcard
 characters (GJ%IFG).

 3. Flags will be returned in AC1 on a successful call (GJ%FLG).
 The flags must be returned because they will be given to the
 GNJFN% call as arguments.

 4. The contents of AC2 will be interpreted as containing an
 input and output JFN (GJ%FNS).

 5. The short form of the GTJFN% call is being used (GJ%SHT).

 6. The file specification is to be read from the user’s terminal
 (.PRIIN,,.PRIOU).

 3−38

 USING FILES

 When the user types the specification <TRAIN>*.* as input, the system
 associates the JFN with one file only. This file is the first one
 found when searching the directory in the order specified in Section
 3.3.1.1. Thus the JFN returned is associated with the file
 FIRST.MAC.1.

 After the GTJFN% call is successfully executed, AC1 contains
 appropriate flags in the left half and the JFN assigned in the right
 half. The flags that will be returned in this particular situation
 are:

 GJ%NAM (bit 3) A wildcard character appeared in the name
 field of the file specification given.

 GJ%EXT (bit 4) A wildcard character appeared in the type
 field of the file specification given.

 GJ%GND (bit 12) Any files marked for deletion will not be
 considered.

 These flags inform the program of the fields that contained wildcard
 characters. The user’s program must now save the contents of AC1
 because this word will be used as the argument to the GNJFN% call.
 The program then performs its desired operation on the first file.
 Once its processing is completed, the program is ready for the
 specification of the next file. But instead of requesting the
 specification from the user, the program executes the GNJFN% call to
 obtain it. The argument to the GNJFN% call is the contents of AC1
 returned from the previous GTJFN% call. Thus, the call in this case
 is equivalent to:

 MOVE AC1,[GJ%NAM+GJ%EXT+GJ%GND,,JFN]
 GNJFN%

 Upon successful execution of the GNJFN% call, the JFN is now
 associated with the next file in the group (that is, FIRST.REL.1).
 AC1 contains appropriate flags in the left half and the same JFN in
 the right half. In this example, the flag returned is GN%EXT (bit 16)
 to indicate that the file type changed between the two files.

 After processing the second file, the user’s program executes another
 GNJFN% call using the original contents of AC1 returned from the
 GTJFN% call. The original contents must be used because this word
 indicates the fields containing wildcard characters. If the current
 contents of AC1 (that is, the flags returned from the GNJFN% call) are
 used, a subsequent GNJFN% call would fail because there are no flags
 set indicating fields containing wildcard characters. This second
 GNJFN% call associates the JFN with the file SECOND.REL.1. The flags
 returned in AC1 are GN%NAM (bit 15) and GN%EXT (bit 16) indicating
 that the filename and file type changed between the two files.
 (Remember that a change in filename implies a change in file type even
 if the two file types are the same.)

 3−39

 USING FILES

 After processing this third file, the user’s program executes another
 GNJFN% call using the original contents of AC1. Upon execution of the
 call, the JFN is now associated with THIRD.EXE.1, and the flags
 returned are GN%NAM and GN%EXT, indicating a change in the filename
 and file type.

 After processing the file THIRD.EXE.1, the user’s program executes a
 final GNJFN% call. Since there are no more files in the group, the
 call returns an error code and releases the JFN. Execution of the
 user’s program continues at the instruction following the GNJFN% call.

 3.8 SUMMARY

 To read from or write to a file, the user’s program must:

 1. Obtain a JFN on the file with the GTJFN% monitor call (refer
 to Section 3.3.1).

 2. Open the file with the OPENF% monitor call (refer to Section
 3.4.1).

 3. Transfer the data with byte, string, or page I/O monitor
 calls (refer to Section 3.5).

 4. Close the file with the CLOSF% monitor call (refer to Section
 3.6.1).

 3.9 FILE EXAMPLES

 Example 1 − This program assigns JFNs, opens an input file and an
 output file, and copies data from the input file to the output file.
 Data is copied until the end of the input file is reached. Refer to
 the TOPS−20 Monitor Calls Reference Manual for explanation of the
 ERSTR% monitor call.

 ;*** PROGRAM TO COPY INPUT FILE TO OUTPUT FILE. ***
 ; (USING BIN%/BOUT% AND IGNORING NULLS)

 TITLE FILEIO ;TITLE OF PROGRAM
 SEARCH MONSYM ;SEARCH SYSTEM JSYS−SYMBOL LIBRARY
 SEARCH MACSYM
 .REQUIRE SYS:MACREL

 ;*** IMPURE DATA STORAGE AND DEFINITIONS ***

 INJFN: BLOCK 1 ;STORAGE FOR INPUT JFN
 OUTJFN: BLOCK 1 ;STORAGE FOR OUTPUT JFN

 3−40

 USING FILES

 PDLEN=3 ;STACK HAS LENGTH 3
 PDLST: BLOCK PDLEN ;SET ASIDE STORAGE FOR STACK

 STDAC. ;DEFINE STANDARD ACs. SEE MACSYM.

 ;*** PROGRAM INITILIZATION ***

 START: RESET% ;CLOSE FILES, ETC.
 MOVE P,[IOWD PDLEN,PDLST] ;ESTABLISH STACK

 ;*** GET INPUT FILE ***

 INFIL: ;PROMPT FOR INPUT FILE
 TMSG <
 INPUT FILE: > ;ON CONTROLLING TERMINAL
 MOVX T1,GJ%OLD+GJ%FNS+GJ%SHT ;SEARCH MODES FOR GTJFN
 ;EXISTING FILE ONLY, FILE−NRs IN B
 ;SHORT CALL
 MOVE T2,[.PRIIN,,.PRIOU] ;GTJFN’S I/O WITH CONTROLLING TERM
 GTJFN% ;GET JOB FILE NUMBER (JFN)
 ERJMPS [PUSHJ P,WARN ;IF ERROR, GIVE WARNING
 JRST INFIL] ;AND LET HIM TRY AGAIN
 MOVEM T1,INJFN ;SUCCESS, SAVE THE JFN

 ;*** GET OUTPUT FILE ***

 OUTFIL: ;PRINT PROMPT FOR
 TMSG <
 OUTPUT FILE: > ;OUTPUT FILE
 MOVX T1,GJ%FOU+GJ%MSG+GJ%CFM+GJ%FNS+GJ%SHT ;GTJFN SEARCH MODES
 ;[DEFAULT TO NEW GENERATION, PRINT
 ; MESSAGE, REQUIRE CONFIRMATION
 ; FILE−NR’S IN T2, SHORT CALL]
 MOVE T2,[.PRIIN,,.PRIOU] ;I/O WITH CONTROLLING TERMINAL
 GTJFN% ;GET JOB FILE NUMBER
 ERJMPS [PUSHJ P,WARN ;IF ERROR, GIVE WARNING
 JRST OUTFIL] ;AND LET HIM TRY AGAIN
 MOVEM T1,OUTJFN ;SAVE THE JFN

 ;NOW, OPEN THE FILES WE JUST GOT

 ; INPUT

 MOVE T1,INJFN ;RETRIEVE THE INPUT JFN
 MOVX T2,FLD(7,OF%BSZ)+OF%RD ;MODES FOR OPENF
 ;[7−BIT BYTES + INPUT]
 OPENF% ;OPEN THE FILE
 ERJMPS FATAL ;IF ERROR, GIVE MESSAGE AND STOP

 ; OUTPUT

 MOVE T1,OUTJFN ;GET THE OUTPUT JFN

 3−41

 USING FILES

 MOVX T2,FLD(7,OF%BSZ)+OF%WR ;MODES FOR OPENF
 ;[7−BIT BYTES + OUTPUT]
 OPENF% ;OPEN THE FILE
 ERJMPS FATAL ;IF ERROR, GIVE MESSAGE AND STOP

 ;*** MAIN LOOP: COPY BYTES FROM INPUT TO OUTPUT ***

 LOOP: MOVE T1,INJFN ;GET THE INPUT JFN
 BIN% ;TAKE A BYTE FROM THE SOURCE
 JUMPE T2,DONE ;IF 0, CHECK FOR END OF FILE
 MOVE T1,OUTJFN ;GET THE OUTPUT JFN
 BOUT ;OUTPUT THE BYTE TO DESTINATION
 ERCALS ERROR
 JRST LOOP ;LOOP, STOP ONLY ON A 0 BYTE
 ;(FOUND AT LOOP+2)

 ;*** TEST FOR END OF FILE, ON SUCCESS FINISH UP ***

 DONE: GTSTS% ;GET THE STATUS OF INPUT FILE
 TXNN T2,GS%EOF ;AT END OF FILE?
 JRST LOOP ;NO, FLUSH NULL AND CONTINUE COPY

 CLOSIF: MOVE T1,INJFN ;YES, RETRIEVE INPUT JFN
 CLOSF% ;CLOSE INPUT FILE
 ERJMPS FATAL ;IF ERROR, GIVE MESSAGE AND STOP

 CLOSOF: MOVE T1,OUTJFN ;RETRIEVE OUTPUT JFN
 CLOSF% ;CLOSE OUTPUT FILE
 ERJMPS FATAL ;IF ERROR, GIVE MESSAGE AND STOP
 TMSG <
 [DONE]> ;SUCCESSFULLY DONE
 JRST ZAP ;STOP

 ;*** ERROR HANDLING ***

 FATAL: TMSG <
 ?> ;FATAL ERRORS PRINT ? FIRST
 PUSHJ P,ERROR ;THEN PRINT ERROR MESSAGE
 JRST ZAP ;AND STOP

 WARN: TMSG <
 %> ;WARNINGS PRINT % FIRST
 ;AND FALL THRU ’ERROR’
 ;BACK TO CALLER

 ERROR: MOVEI T1,.PRIOU ;DECLARE PRINCIPAL OUTPUT DEVICE
 ;FOR ERROR MESSAGE
 MOVE T2,[.FHSLF,,−1] ;CURRENT FORK,, LAST ERROR
 SETZ T3, ;NO LIMIT,, FULL MESSAGE
 ERSTR% ;PRINT THE MESSAGE

 3−42

 USING FILES

 JFCL ;IGNORE UNDEFINED ERROR NUMBER
 JFCL ;IGNORE ERROR DURING EXE OF ERSTR
 POPJ P, ;RETURN TO CALLER

 ZAP: HALTF% ;STOP
 JRST START ;WE ARE RESTARTABLE
 END START ;TELL LINKING LOADER START ADDRESS

 Example 2 − This program accepts input from a user at the terminal and
 then outputs the data to the line printer. Refer to Section 2.9 for
 explanation of the RDTTY% call.

 TITLE LPTPNT ;PROGRAM TO PRINT TERMINAL INPUT
 ;ON PRINTER
 SEARCH MONSYM ;SEARCH SYSTEM JSYS−SYMBOL LIBRARY
 SEARCH MACSYM
 .REQUIRE SYS:MACREL

 STDAC. ;DEFINE STANDARD ACs

 BUFSIZ==200
 PDLEN==50

 COUNT: BLOCK 1
 LPTJFN: BLOCK 1
 BUFFER: BLOCK BUFSIZ
 PDL: BLOCK PDLEN

 START: RESET% ;RESET I/O, ETC.
 MOVE P,[IOWD PDLEN,PDL] ;SET UP STACK
 TMSG <ENTER TEXT TO BE PRINTED (END WITH ^Z):
 > ;OUTPUT PROMPTING TEXT
 HRROI T1,BUFFER ;GET POINTER TO BUFFER
 MOVE T2,[RD%BRK+BUFSIZ*5] ;GET FLAG AND MAX # OF CHARS TO READ
 SETZM T3 ;NO RE−TYPE BUFFER
 RDTTY% ;INPUT TEXT FROM TERMINAL
 EJSHLT ;ERROR, STOP
 HRRZS T2 ;GET CHARS REMAINING IN BUFFER
 MOVEI T1,BUFSIZ*5 ;COMPUTE NUMBER OF CHARS READ =
 SUB T1,T2 ;BUFFERSIZE MINUS CHARS REMAINING
 SOS T1 ;DON’T INCLUDE ^Z
 MOVEM T1,COUNT ;SAVE # OF CHARS INPUT
 ;GET A JFN FOR THE PRINTER AND OPEN THE PRINTER

 MOVX T1,GJ%SHT!GJ%FOU ;OUTPUT FILE, SHORT CALL
 HRROI T2,[ASCIZ /LPT:/] ;GET POINTER TO NAME OF FILE
 GTJFN% ;GET A JFN FOR THE PRINTER
 ERJMPS JFNERR ;ERROR, PRINT ERROR MESSAGE
 MOVEM T1,LPTJFN ;REMEMBER PRINTER JFN
 MOVX T2,FLD(7,OF%BSZ)+OF%WR ;7−BIT BYTES,
 ;WRITE ACCESS WANTED

 3−43

 USING FILES

 OPENF% ;OPEN THE PRINTER FOR OUTPUT
 ERJMPS OPNERR ;ERROR, PRINT ERROR MESSAGE

 ;NOW OUTPUT THE TEXT THAT WAS INPUT FROM THE TERMINAL

 HRROI T2,BUFFER ;GET POINTER TO TEXT
 ;(PRINTER JFN STILL IN T1)
 MOVN T3,COUNT ;GET NUMBER OF CHARS TO OUTPUT
 SOUT% ;OUTPUT STRING OF CHARS TO
 ;THE PRINTER
 ERJMPS DATERR ;ERROR, PRINT ERROR MESSAGE
 TMSG <
 OUTPUT HAS BEEN SENT TO THE PRINTER...
 > ;OUTPUT CONFIRMATION MESSAGE
 MOVE T1,LPTJFN ;GET PRINTER JFN
 CLOSF% ;CLOSE IT
 ERJMPS DATERR ;UNEXPECTED ERROR, PRINT ERROR MESSAGE
 HALTF% ;FINISHED
 JRST START ;IF CONTINUED, GO BACK TO START

 ;ERROR ROUTINES

 JFNERR: TMSG<
 ? COULD NOT GET A JFN FOR THE PRINTER
 >
 HALTF%
 JRST START ;IF CONTINUED, GO BACK TO START

 OPNERR: TMSG<
 ? COULD NOT OPEN THE PRINTER FOR OUTPUT
 >
 HALTF%
 JRST START ;IF CONTINUED, GO BACK TO START

 DATERR: TMSG<
 ? DATA ERROR DURING OUTPUT TO PRINTER
 >
 HALTF%
 JRST START ;IF CONTINUED, GO BACK TO START

 END START

 3−44

 CHAPTER 4

 USING THE SOFTWARE INTERRUPT SYSTEM

 4.1 OVERVIEW

 Program execution usually occurs in a sequential manner, where
 instructions are executed one after another. But sometimes a program
 must be able to receive asynchronous signals from terminals, the
 monitor, or other programs, or as a result of its own execution. By
 using the software interrupt system, the user can specify conditions
 that will cause his program to deviate from its sequential method of
 execution.

 An interrupt is defined as a break in the normal flow of control
 during a program’s execution. The break, or interrupt, is caused by
 the occurrence of a prespecified condition. By specifying the
 conditions that can cause an interrupt, the program has the capability
 of dynamically responding to external events and error conditions and
 of generating requests for services. Because the program can respond
 to special conditions as they occur, it does not have to explicitly
 and repeatedly test for them. In addition, the program’s execution is
 faster because the program does not have to include a special test
 after the possible occurrence of the condition.

 When an interrupt occurs, the system transfers control from the main
 program sequence to a previously−specified routine that will process
 the interrupt. After the routine has completed its processing of the
 interrupt, the system can transfer control back to the program at the
 point it was interrupted, and execution can continue. See Figure 4−1.

 4−1

 USING THE SOFTWARE INTERRUPT SYSTEM

 −−−−−−−−−−−−−−−−−
 | User Program |
 | is |
 | Executing |
 −−−−−−−−−−−−−−−−−
 |
 V
 −−−−−−−−−−−−−−−−−
 | Interrupt |
 | Condition |
 | Occurs |
 −−−−−−−−−−−−−−−−−
 |
 V
 ^ ^
 / \ / \
 / \ / \
 / Has \ /Is An\
 /Program\ /Inter− \
 / Enabled \ /rupt of \ −−−−−−−−−−−−−−−−−
 /for Condi− \ Yes /Higher Pri−\ No | Execute |
 <tion on this >−−−−−−−−−−−>< ority Being >−−−−−−−>| User’s Inter− |
 \ Channel / ^ \ Processed / | rupt Routine |
 \ ? / | \ ? / −−−−−−−−|−−−−−−−−
 \ / | \ / |
 \ / | \ / |
 \ / | \ / |
 \ / | \ / |
 V | V |
 | No | | Yes |
 | | V |
 | | −−−−−−−−−−−−−−−−−−−−−− |
 V | | Wait Until | |
 −−−−−−−−−−−−−−−−− | | Higher Priority | |
 | Perform System| | | Interrupt Finishes | |
 | Default Action| | −−−−−−−−|−−−−−−−−−−−−− |
 | (e.g., stops | | | |
 | job, print | \−−−−−−−−−−−−−/ |
 | message) | |
 −−−−−−−−|−−−−−−−− |
 | <−−/
 V
 −−−−−−−−−−−−−−−−−
 | User Program |
 | Continues if |
 | Job Has Not |
 | Not Been |
 | Terminated |
 −−−−−−−−−−−−−−−−−

 4−2

 USING THE SOFTWARE INTERRUPT SYSTEM

 Figure 4−1: Basic Operational Sequence of the Software Interrupt
 System

 4−3

 USING THE SOFTWARE INTERRUPT SYSTEM

 4.2 INTERRUPT CONDITIONS

 Conditions that cause the program to be interrupted when the interrupt
 system is enabled are:

 1. Conditions generated when specific terminal keys are typed.
 There are 36 possible codes; each one specifies the
 particular terminal character or condition on which an
 interrupt is to be initiated. Refer to Table 4−2 for the
 possible codes.

 2. Invalid instructions (for example, I/O instructions given in
 user mode) or privileged monitor calls issued by a non
 privileged user.

 3. Memory conditions, such as illegal memory references.

 4. Arithmetic processor conditions, such as arithmetic overflow
 or underflow.

 5. Certain file or device conditions, such as end of file.

 6. Program−generated software interrupts.

 7. Termination of an inferior process.

 8. System resource unavailability.

 9. Interprocess communication (IPCF) and Enqueue/Dequeue
 interrupts.

 4.3 SOFTWARE INTERRUPT CHANNELS AND PRIORITIES

 Each condition is associated with one of 36 software interrupt
 channels. Most conditions are permanently assigned to specific
 channels; however, the user’s program can associate some conditions
 (for example, conditions generated by specific terminal keys) to any
 one of the assignable channels. (Refer to Table 4−1 for the channel
 assignments.) When the condition associated with a channel occurs, and
 that channel has been activated, an interrupt is generated. Control
 can then be transferred to the routine responsible for processing
 interrupts on that channel.

 The user program assigns each channel to one of three priority levels.
 Priority levels allow the occurrence of some conditions to suspend the
 processing of other conditions. The levels are referred to as level
 1, 2, or 3 with level 1 having the highest priority. Level 0 is not a
 legal priority level.[1]

 4−4

 USING THE SOFTWARE INTERRUPT SYSTEM

 Table 4−1: Software Interrupt Channel Assignments

 __

 Channel Symbol Meaning
 __

 0−5 Assignable by user program

 6 .ICAOV Arithmetic overflow

 7 .ICFOV Arithmetic floating point overflow

 8 Reserved for Digital

 9 .ICPOV Pushdown list (PDL) overflow*

 10 .ICEOF End of file condition

 11 .ICDAE Data error file condition*

 12 .ICQTA Disk quota exceeded

 13−14 Reserved for Digital

 15 .ICILI Illegal instruction*

 16 .ICIRD Illegal memory read*

 17 .ICIWR Illegal memory write*

 18 Reserved for Digital

 19 .ICIFT Inferior process termination

 20 .ICMSE System resources exhausted*

 21 Reserved for Digital

 22 .ICNXP Nonexistent page reference

 23−35 Assignable by user program
 __

 −−−−−−−−−−−−−−−

 [1] If an interrupt is generated in a process where the priority
 level is 0, the system considers that the process is not
 prepared to handle the interrupt. The process is then suspended
 or terminated according to the setting of bit 17 (SC%FRZ) in its
 capability word.

 4−5

 USING THE SOFTWARE INTERRUPT SYSTEM

 * These channels (called panic channels) cannot be completely
 deactivated. An interrupt generated on one of these channels
 terminates the process if the channel is not activated.

 The software interrupt system processes interrupts on activated
 channels only, and each channel can be activated and deactivated
 independently of other channels. When activated, the channel can
 generate an interrupt for its associated priority level. An interrupt
 for any priority level is initiated only if there are no interrupts in
 progress for the same or higher priority levels. If there are, the
 system remembers the interrupt request and initiates it after all
 equal or higher priority level interrupts finish. This means that a
 higher priority level request can suspend a routine processing a lower
 level interrupt. Thus, the user must be concerned with several items
 when he assigns his priority levels. He must consider 1) when one
 interrupt request can suspend the processing of another and 2) when
 the processing of a second interrupt cannot be deferred until the
 completion of the first.

 4.4 SOFTWARE INTERRUPT TABLES

 To process interrupts, the user includes, as part of his program,
 special service routines for the channels he will be using. He must
 then specify the addresses of these routines to the system by setting
 up a channel table. In addition, the user must also include a
 priority level table as part of his program. Finally, he must declare
 the addresses of these tables to the system.

 4.4.1 Specifying the Software Interrupt Tables

 Before using the software interrupt system, the user’s program must
 set up the contents of the channel table and the priority level table.
 The program must then specify their addresses with either the SIR% or
 XSIR% monitor calls.

 These calls are similar, but their differences are important. The
 SIR% call can be used in single−section programs, but the XSIR% call
 must be used in programs that use more than one section of memory.
 The SIR% call works in non−zero sections only if the tables are in the
 same section as the code that makes the call. The code that causes
 the interrupt must also be in that section, as must the code that
 processes the interrupt. Because of the limitations of the SIR% call,
 you should use the XSIR% call.

 The SIR% monitor call accepts two words of arguments: the identifier
 for the program (or process) in AC1, and the table addresses in AC2.
 Refer to Section 5.3 for the description of process identifiers.

 4−6

 USING THE SOFTWARE INTERRUPT SYSTEM

 The following example shows the use of the SIR% call.

 MOVEI 1,.FHSLF ;identifier of current process
 MOVE 2,[LEVTAB,,CHNTAB] ;addresses of the tables
 SIR%

 The XSIR% call accepts the following arguments: in AC1, the
 identifier of the process for which the interrupt channel tables are
 to be set; in AC2, the address of the argument block.

 The argument block is a three−word block that has the following
 format:

 !==!
 ! Length of the argument block, including this word !
 !−−!
 ! Address of the interrupt level table !
 !−−!
 ! Address of the channel table !
 !==!

 Control always returns to the user’s program at the instruction
 following the SIR% and XSIR% calls. If the call is successful, the
 table addresses are stored in the monitor. If the call is not
 successful, an illegal instruction trap is generated.

 Any changes made to the contents of the tables after the XSIR% or SIR%
 calls have been executed will be in effect at the time of the next
 interrupt.

 4.4.2 Channel Table

 The channel table, CHNTAB,[2] contains a one−word entry for each
 channel; thus, the table has 36 entries. Each entry corresponds to a
 particular channel, and each channel is associated at any given time
 with only one interrupt condition. (Refer to Table 4−1 for the
 interrupt conditions associated with each channel.)

 The CHNTAB table is indexed by the channel number (0 through 35). The
 general format, for use with the XSIR% and XRIR% monitor calls, can be
 used in any section of memory. The left half of each entry contains
 the priority level (1, 2, or 3) in bits 0−5 (SI%LEV) to which the
 channel is assigned. Bits 6−35 (SI%ADR) of each entry contain the
 starting address of the routine to process interrupts generated on
 −−−−−−−−−−−−−−−

 [2] The user can call his priority channel table any name he
 desires; however, it is good practice to call it CHNTAB.

 4−7

 USING THE SOFTWARE INTERRUPT SYSTEM

 that channel. If a particular channel is not used, the corresponding
 entry in the channel table should be zero.

 In the older format, for use with the SIR% and RIR% calls by any
 single−section program, the left half of each word contains the
 priority level (1, 2, or 3) for that channel. The right half contains
 the address of the interrupt routine that will handle interrupts on
 that channel.

 The following example is for use with the XSIR% monitor call.

 CHNTAB: FLD(2,SI%LEV)+FLD(CHN0SV,SI%ADR) ;channel 0
 FLD(2,SI%LEV)+FLD(CHN1SV,SI%ADR) ;channel 1
 FLD(2,SI%LEV)+FLD(CHN2SV,SI%ADR) ;channel 2
 FLD(2,SI%LEV)+FLD(CHN3SV,SI%ADR) ;channel 3
 0 ;channel 4
 0 ;channel 5
 FLD(1,SI%LEV)+FLD(APRSRV,SI%ADR) ;channel 6
 0 ;channel 7
 0 ;channel 8
 FLD(1,SI%LEV)+FLD(STKSRV,SI%ADR) ;channel 9
 0 ;channel 10
 . .
 . .
 . .
 0 ;channel 35

 In this example, channels 0 through 3 are assigned to priority level
 2, with the interrupt routine at CHN0SV servicing channel 0, the
 routine at CHN1SV servicing channel 1, the routine at CHN2SV servicing
 channel 2, and the routine at CHN3SV servicing channel 3. Channels 6
 and 9 are assigned to priority level 1, with the routine at APRSRV
 servicing channel 6 and the routine at STKSRV servicing channel 9.
 All remaining channels are not assigned.

 4.4.3 Priority Level Table

 The priority level table, LEVTAB,[3] The priority level table, LEVTAB,
 [3] is a three−word table, containing a one−word entry for each of the
 three priority levels. In the general form, each word contains the
 30−bit address of the first word of the two−word block in the process
 address space. The block addressed by word n of LEVTAB is used to
 store the global PC flags and address when an interrupt of level n+1
 occurs.

 The PC flags are stored in the first word of the PC block, and the PC
 −−−−−−−−−−−−−−−

 [3] The user can call his priority level table any name he desires;
 however, it is good practice to call it LEVTAB.

 4−8

 USING THE SOFTWARE INTERRUPT SYSTEM

 address is stored in the second. This form of the table must be used
 with the XSIR% and XRIR% monitor calls, and can be used in any
 section.

 The older form of the interrupt level table can be used in any
 single−section program, and must be used with the SIR% and RIR% calls.
 This table also contains three words, indexed by the priority level
 minus 1. Each word contains zero in the left half, and the 18−bit
 address of the word in which to store the one−word section−relative PC
 in the right half. This address is assumed to be in the same program
 section that contained the SIR% monitor call. (For more information
 see Chapter 8.) The system must save the value of the program counter
 so that it can return control at the appropriate point in the program
 once the interrupt routine has completed processing an interrupt. If
 a particular priority level is not used, its corresponding entry in
 the level table should be zero.

 The following is a sample of a level table.

 LEVTAB: 0,,PCLEV1 ;Addresses to save PC for interrupts
 0,,PCLEV2 ;occurring on priority levels 1 and 2.
 0,,0 ;No priority level 3 interrupts are
 ;planned

 4.5 ENABLING THE SOFTWARE INTERRUPT SYSTEM

 Once the interrupt tables have been set up and their addresses defined
 with the XSIR% monitor call, the user’s program must enable the
 interrupt system. When the interrupt system is enabled, interrupts
 that occur on activated channels are processed by the user’s interrupt
 routines. When the interrupt system is disabled, the monitor
 processes interrupts as if the channels for these interrupts were not
 activated.

 The EIR% monitor call, used to enable the system, accepts one
 argument: the identifier for the process in AC1.

 MOVEI 1,.FHSLF ;identifier of current process
 EIR%

 Control always returns to the instruction following the EIR call.

 4.6 ACTIVATING INTERRUPT CHANNELS

 Once the software interrupt system is enabled, the channels on which
 interrupts can occur must be activated (refer to Table 4−1 for the
 channel assignments). The channels to be activated have a nonzero
 entry in the appropriate word in the channel table.

 4−9

 USING THE SOFTWARE INTERRUPT SYSTEM

 The AIC% monitor call activates one or more of the 36 interrupt
 channels. This call accepts two words of arguments − the identifier
 for the process in AC1, and the channels to be activated in AC2.

 The channels are indicated by setting bits in AC2. Setting bit n
 indicates that channel n is to be activated. The AIC% call activates
 only those channels for which bits are set.

 MOVEI 1,.FHSLF ;identifier of current process
 MOVE 2,[1B<.ICAOV>+1B<.ICPOV>] ;activate channels 6 and 9
 AIC%

 Control always returns to the instruction following the AIC% call.

 Some channels, called panic channels, cannot be deactivated by
 disabling the channel or the entire interrupt system. (Refer to Table
 4−1 for these channels.) This is because the occurrence of the
 conditions associated with these channels cannot be completely ignored
 by the monitor.

 If one of these conditions occurs, an interrupt is generated whether
 the channel is activated or not. If the channel is not activated, the
 process is terminated, and usually a message is output before control
 returns to the monitor. If the channel is activated, control is given
 to the user’s interrupt routine for that channel.

 4.7 GENERATING AN INTERRUPT

 A process generates an interrupt by producing a condition for which an
 interrupt channel is enabled, such as arithmetic overflow, or by using
 the IIC% monitor call. This call can generate an interrupt on any of
 the 36 interrupt channels of the process the calling process
 specifies. See Section 5.10 for a description of the IIC% call.

 4.8 PROCESSING AN INTERRUPT

 When a software interrupt occurs on a given priority level, the
 monitor stores the current program counter (PC) word in the address
 indicated in the priority level table (refer to Section 4.4.3). The
 monitor then transfers control to the interrupt routine associated
 with the channel on which the interrupt occurred. The address of this
 routine is specified in the channel table (refer to Section 4.4.2).

 Since the user’s program cannot determine when an interrupt will
 occur, the interrupt routine must preserve the state of the program so
 the program can be resumed properly. First, the routine stores the
 contents of any user accumulators for use while processing the
 interrupt. After the accumulators are saved, the interrupt routine
 processes the interrupt.

 4−10

 USING THE SOFTWARE INTERRUPT SYSTEM

 Occasionally, an interrupt routine may need to alter locations in the
 main section of the program. For example, a routine may change the
 stored PC word to resume execution at a location different from where
 the interrupt occurred. Or it may alter a value that caused the
 interrupt. It is important that care be used when writing routines
 that alter data because any changes will remain when control is
 returned to the main program. For example, if data is inadvertently
 stored in the PC word, return to the main section of the program would
 be incorrect when the system attempted to use the word as the value of
 the program counter.

 If a higher−priority interrupt occurs during the execution of an
 interrupt routine, the execution of the lower−priority routine is
 suspended. The value of its program counter is stored at the location
 indicated in the priority level table for the new interrupt. When the
 routine for this new interrupt is completed, the suspended routine
 resumes.

 If an interrupt of the same or lower priority occurs during the
 execution of a routine, the monitor holds the interrupt until all
 higher or equal level interrupts have been processed.

 The system considers the user’s program unable to process an interrupt
 on an activated channel if any of the following is true:

 1. The priority level associated with the channel is 0.

 2. The program has not defined its interrupt tables by executing
 an XSIR% or SIR% monitor call.

 3. The process has not enabled the interrupt system by executing
 an EIR% monitor call, and the channel on which the interrupt
 occurs is a panic channel.

 In any of these cases, an interrupt on a panic channel terminates the
 user’s program. All other interrupts are ignored.

 4.8.1 Dismissing an Interrupt

 Once the processing of an interrupt is complete, the interrupt routine
 should restore the user accumulators to their initial values. Then it
 should return control to the interrupted code by using the DEBRK%
 monitor call. This call restores the PC word and resumes the program.
 The call has no arguments, and must be the last statement in the
 interrupt routine.

 If the interrupt−processing routine has not changed the PC of the
 user’s program, the DEBRK% call restores the program to the same state

 4−11

 USING THE SOFTWARE INTERRUPT SYSTEM

 the program was in just before the interrupt occurred. If the program
 was interrupted while waiting for I/O to complete, for example, the
 program will again be waiting for I/O to complete when it resumes
 execution after the DEBRK% call.

 If the PC word was changed, the program resumes execution at the new
 PC location. The state of the program is unchanged.

 4.9 TERMINAL INTERRUPTS

 The user’s program can associate channels 0 through 5 and channels 24
 through 35 with occurrences of various conditions, such as the
 occurrence of a particular character typed at the terminal or the
 receipt of an IPCF message. This section discusses terminal
 interrupts; refer to Chapters 6 and 7 for other types of assignable
 interrupts.

 There are 36 codes used to specify terminal characters or conditions
 on which interrupts can be initiated. These codes, along with their
 associated conditions, are shown in Table 4−2.

 Table 4−2: Terminal Codes and Conditions

 __

 Code Symbol Character or Condition
 __

 0 .TICBK CTRL/@ or break

 1 .TICCA CTRL/A

 2 .TICCB CTRL/B

 3 .TICCC CTRL/C

 4 .TICCD CTRL/D

 5 .TICCE CTRL/E

 6 .TICCF CTRL/F

 7 .TICCG CTRL/G

 8 .TICCH CTRL/H

 9 .TICCI CTRL/I

 10 .TICCJ CTRL/J

 4−12

 USING THE SOFTWARE INTERRUPT SYSTEM

 11 .TICCK CTRL/K

 12 .TICCL CTRL/L

 13 .TICCM CTRL/M

 14 .TICCN CTRL/N

 15 .TICCO CTRL/O

 16 .TICCP CTRL/P

 17 .TICCQ CTRL/Q

 18 .TICCR CTRL/R

 19 .TICCS CTRL/S

 20 .TICCT CTRL/T

 21 .TICCU CTRL/U

 22 .TICCV CTRL/V

 23 .TICCW CTRL/W

 24 .TICCX CTRL/X

 25 .TICCY CTRL/Y

 26 .TICCZ CTRL/Z

 27 .TICES ESC key

 28 .TICRB Delete (or rubout) key

 29 .TICSP Space

 30 .TICRF Dataset carrier off

 31 .TICTI Typein

 32 .TICTO Typeout

 33 .TITCE Two−character escape sequence

 34−35 Reserved
 __

 To cause terminal interrupts to be generated, the user’s program must
 assign the desired terminal code to one of the assignable channels.

 4−13

 USING THE SOFTWARE INTERRUPT SYSTEM

 The ATI% monitor call is used to assign this code. This call accepts
 one word of arguments: the terminal code in the left half of AC1 and
 the channel number in the right half.

 MOVE 1,[.TICCE,,INTCH1] ;assign CTRL/E to channel INTCH1
 ATI%

 Control always returns to the instruction following the ATI% call. If
 the current job is not attached to a terminal (there is no terminal
 controlling the job), the terminal code assignments are remembered;
 they will be in effect when a terminal is attached.

 The monitor handles the receipt of a terminal interrupt character in
 either immediate mode or deferred mode. In immediate mode, the
 terminal character causes the system to initiate an interrupt as soon
 as the user types the character (that is, as soon as the system
 receives it). In deferred mode, the terminal character is placed in
 either immediate mode or deferred mode. In immediate mode, the
 terminal character causes the system to initiate an interrupt as soon
 as the user types the character (as soon as the system receives it).
 In deferred mode, the terminal character is placed in the input stream
 in sequence with other characters of the input, unless two of the same
 character are typed in succession. In this case, an interrupt occurs
 at the time the second one is typed. If only one character enabled in
 deferred mode is typed, the system initiates an interrupt only when
 the program attempts to read the character. Deferred mode allows
 interrupt actions to occur in sequence with other actions specified in
 the input (for example, when characters are typed ahead of the time
 that the program actually requests them). In either mode, the
 character is not passed to the program as data. The system assumes
 that interrupts are to be handled immediately unless a program has
 issued the STIW% (Set Terminal Interrupt Word) monitor call. (Refer
 to TOPS−20 Monitor Calls Reference Manual for a description of this
 call.)

 4.10 ADDITIONAL SOFTWARE INTERRUPT MONITOR CALLS

 Additional monitor calls are available that allow the user’s program
 to check and to clear various parts of the software interrupt system.
 Also, there is a call useful for interprocess communication (refer to
 the IIC% call in Section 5.10).

 4.10.1 Testing for Enablement

 The SKPIR% monitor call tests the software interrupt system to see if
 it is enabled. The call accepts in AC1 the identifier of the process.
 After execution of the call, control returns to the next instruction
 if the system is off, and to the second instruction if the system is
 on.

 4−14

 USING THE SOFTWARE INTERRUPT SYSTEM

 MOVEI 1,.FHSLF ;identifier of current process
 SKPIR% ;test interrupt system
 return ;system is off
 return ;system is on

 4.10.2 Obtaining Interrupt Table Addresses

 The RIR% and XRIR% monitor calls obtain the channel and priority level
 table addresses for a process. These calls are useful when several
 routines in one process want to share the interrupt tables.

 4.10.2.1 The RIR% Monitor Call − The RIR% monitor call can be used in
 any section of memory, but is only useful for obtaining table
 addresses if those tables are in the same section of memory as the
 code that makes the call. Furthermore, it can only obtain table
 addresses that have been set by the SIR call.

 The call accepts the identifier of the process in AC1. It returns the
 table addresses in AC2. The left half of AC2 contains the
 section−relative address of the priority level table, and the right
 half contains the section−relative address of the channel table. If
 the process has not set the table addresses with the SIR% monitor
 call, AC2 contains zero.

 Control always returns to the instruction following the RIR% call.

 The following example shows the use of the RIR% call.

 MOVEI 1,.FHSLF ;identifier of current process
 RIR% ;return the table addresses

 4.10.2.2 The XRIR% Monitor Call − This call obtains the addresses of
 the interrupt tables defined for a process. The tables can be in any
 section of memory. The code that makes the call can also be in any
 section. This call can only obtain addresses that have been set by
 the XSIR% call.

 The call accepts the identifier of the process in AC1, and the address
 of the argument block in AC2. The argument block is three words long,
 word zero must contain the number 3. The call returns the addresses
 into words one and two. The block has the following format:

 4−15

 USING THE SOFTWARE INTERRUPT SYSTEM

 !===!
 ! Length of the argument block, including this word !
 !−−−!
 ! Address of the interrupt level table !
 !−−−!
 ! Address of the channel table !
 !===!

 Control always returns to the instruction following the XRIR% call.
 If the process has not set the table addresses with the XSIR% monitor
 call, words one and two of the argument block contain zero.

 4.10.3 Disabling the Interrupt System

 The DIR% monitor call disables the software interrupt system for the
 process. It accepts the identifier of the process in AC1.

 MOVEI 1,.FHSLF ;identifier of current process
 DIR% ;disable system

 Control always returns to the instruction following the DIR% call.

 If interrupts occur while the interrupt system is disabled, they are
 remembered until the system is reenabled. At that time, the
 interrupts take effect unless an intervening CIS% monitor call (refer
 to Section 4.10.6) has been issued.

 Software interrupts assigned to panic channels are not completely
 disabled by the DIR% call. These interrupts terminate the process,
 and the superior process is notified if it has enabled channel .ICIFT.
 In addition, if the terminal code for CTRL/C (.TICCC) is assigned to a
 channel, it causes an interrupt that cannot be disabled by the DIR%
 call. However, the CTRL/C interrupt can be disabled by deactivating
 the channel assigned to the CTRL/C terminal code.

 4.10.4 Deactivating a Channel

 The DIC% monitor call is used to deactivate interrupt channels. The
 call accepts two words of arguments: the process identifier in AC1,
 and the channels to be deactivated in AC2. Setting bit n in AC2
 indicates that channel n is to be deactivated.

 MOVEI 1,.FHSLF ;identifier of current process
 MOVE 2,[1B<.ICAOV>+1B<.ICPOV>] ;deactivate channels 6 and 9
 DIC%

 Control always returns to the instruction following the DIC% call.

 4−16

 USING THE SOFTWARE INTERRUPT SYSTEM

 When a channel is deactivated, interrupt requests for that channel are
 ignored except for interrupts generated on panic channels (refer to
 Section 4.6).

 4.10.5 Deassigning Terminal Codes

 The DTI% monitor call deassigns a terminal code. This call accepts
 one argument word: the terminal code in AC1.

 MOVEI 1,.TICCE ;deassign CTRL/E
 DTI%

 Control always returns to the instruction following the DTI% call.
 This monitor call is ignored if the specified terminal code has not
 been defined by the current job.

 4.10.6 Clearing the Interrupt System

 The CIS% monitor call clears the interrupt system for the current
 process. This call clears interrupts in progress and all waiting
 interrupts. This call requires no arguments, and control always
 returns to the instruction following the CIS call. The RESET% monitor
 call (refer to Section 2.6.1) performs these same actions as part of
 its initializing procedures.

 4.11 SUMMARY

 To use the software interrupt system, the user’s program must:

 1. Supply routines that will process the interrupts.

 2. Set up a channel table containing the addresses of the
 routines (refer to Section 4.4.2) and a priority level table
 containing the addresses for storing the program counter (PC)
 values (refer to Section 4.4.3).

 3. Specify the addresses of the tables with the XSIR% monitor
 call (refer to Section 4.4.3).

 4. Enable the software interrupt system with the EIR% monitor
 call (refer to Section 4.5).

 5. Activate the desired channels with the AIC% monitor call
 (refer to Section 4.6).

 4−17

 USING THE SOFTWARE INTERRUPT SYSTEM

 4.12 SOFTWARE INTERRUPT EXAMPLE

 This program copies one file to another. It accepts the input and
 output filenames from the user. The end of file is detected by a
 software interrupt, and CTRL/E is enabled as an escape character.

 TITLE SOFTWARE INTERRUPT EXAMPLE
 SEARCH MONSYM
 SEARCH MACSYM
 .REQUIRE SYS:MACREL

 STDAC. ;DEFINE STANDARD ACs
 INTCH1=1

 START: RESET% ;RELEASE FILES, ETC.
 XHLLI T1,EOFINT ;GET CURRENT PROCESS SECTION NUMBER
 HLLZS T1 ;ISOLATE SECTION NUMBER ONLY
 IORM T1,CHNTAB+INTCH1 ; AND ADD IT TO SERVICE ROUTINE
 IORM T1,CHNTAB+.ICEOF ;ADDRESSES FOR OUR ROUTINES
 IORM T1,LEVTAB+1 ; AND LEVTAB
 MOVEI T1,.FHSLF ;CURRENT PROCESS
 MOVEI T2,3 ;NUMBER OF WORDS IN ARG BLOCK
 MOVEM T2,ARGBLK ;PUT NUMBER IN WORD ZERO
 XMOVEI T2,LEVTAB ;GLOBAL ADDRESS OF LEVEL TABLE
 MOVEM T2,ARGBLK+1 ;MOVE IT TO ARGBLK WORD ONE
 XMOVEI T2,CHNTAB ;GLOBAL ADDRESS OF CHANNEL TABLE
 MOVEM T2, ARGBLK+2 ;MOVE IT TO ARGBLK WORD TWO
 XMOVEI T2,ARGBLK ;GLOBAL ADDRESS OF ARGUMENT BLOCK
 XSIR%
 EIR% ;ENABLE SYSTEM
 MOVE T2,[1B<INTCH1>+1B<.ICEOF>] ;ACTIVATE CHANNELS
 AIC%
 MOVE T1,[.TICCE,,INTCH1] ;ASSIGN CTRL/E TO CHANNEL 1
 ATI%
 GETIF: TMSG <INPUT FILE: >
 MOVX T1,GJ%OLD+GJ%MSG+GJ%CFM+GJ%FNS+GJ%SHT
 MOVE T2,[.PRIIN,,.PRIOU]
 GTJFN% ;GET FILENAME FROM USER
 ERJMP ERROR1
 MOVEM T1,INJFN
 GETOF: TMSG <OUTPUT FILE: >
 MOVX T1,GJ%FOU+GJ%MSG+GJ%CFM+GJ%FNS+GJ%SHT
 MOVE T2,[.PRIIN,,.PRIOU]
 GTJFN% ;GET FILENAME FROM USER
 ERJMP ERROR2
 MOVEM T1,OUTJFN

 4−18

 USING THE SOFTWARE INTERRUPT SYSTEM

 OPNIF: MOVE T1,INJFN
 MOVX T2,FLD(7,OF%BSZ)+OF%RD
 OPENF% ;OPEN INPUT FILE
 ERJMP ERROR3
 OPNOF: MOVE T1,OUTJFN
 MOVX T2,FLD(7,OF%BSZ)+OF%WR
 OPENF% ;OPEN OUTPUT FILE
 ERJMP ERROR3
 CPYBYT: MOVE T1,INJFN
 BIN% ;READ INPUT BYTE
 MOVE T1,OUTJFN
 BOUT% ;WRITE OUTPUT BYTE
 JRST CPYBYT ;LOOP UNTIL EOF
 DONE: MOVE T1,INJFN
 CLOSF% ;CLOSE INPUT FILE
 JFCL
 MOVE T1,OUTJFN
 CLOSF% ;CLOSE OUTPUT FILE
 JFCL
 HALTF%
 ;ROUTINE TO HANDLE ^E − ABORTS OPERATION

 CTRLE: MOVEI T1,.PRIOU
 CFOBF% ;CLEAR OUTPUT BUFFER
 TMSG <ABORTED.> ;INFORM USER
 CIS% ;CLEAR SYSTEM
 JRST START

 ;ROUTINE TO HANDLE EOF − COMPLETES OPERATION NORMALLY

 EOFINT: MOVEM T1,INTAC1 ;SAVE ACs
 XMOVEI T1,DONE ;CHANGE PC
 MOVEM T1,PC2+1 ;TO DONE
 MOVE T1,INTAC1 ;RESTORE ACs
 DEBRK% ;DISMISS INTERRUPT

 ;LEVEL TABLE
 LEVTAB: 0
 PC2
 0
 PC2: BLOCK 2

 4−19

 USING THE SOFTWARE INTERRUPT SYSTEM

 ;CHANNEL TABLE
 CHNTAB: 0
 FLD(2,SI%LEV)!FLD(CTRLE,SI%ADR)
 REPEAT ^D8,<0>
 FLD(2,SI%LEV)!FLD(EOFINT,SI%ADR)
 REPEAT ^D25,<0>
 ARGBLK: BLOCK 3
 INJFN: BLOCK 1
 OUTJFN: BLOCK 1
 INTAC1: BLOCK 1
 ERROR1: TMSG <
 ?INVALID FILE SPECIFICATION>
 HALTF%
 ERROR2: TMSG <
 ?INVALID FILE SPECIFICATION>
 HALTF%
 ERROR3: TMSG <
 ?CANNOT OPEN FILE>
 HALTF%
 LIT
 END START

 4−20

 CHAPTER 5

 PROCESS STRUCTURE

 As stated in Chapter 1, the TOPS−20 operating system allows each job
 to have multiple processes that can run simultaneously. Each process
 has its own environment called its address space. Associated with the
 environment is the program counter (PC) of the process and a
 well−defined relationship with other processes in the job. In
 TOPS−20, the term fork is synonymous with the term process.

 The TOPS−20 operating system schedules the running of processes, not
 entire jobs. A process can be scheduled independent of other
 processes because it has a definite existence: its beginning is the
 time at which it is created, and its end is the time at which it is
 killed. At any point in its existence, a process can be described by
 its state, which is represented by a status word and a PC word (refer
 to Section 5.9).

 The relationships among processes in a job are shown in the diagram
 below. Each process has one immediate superior process (except for
 the top−level process) and can have one or more inferior processes.
 Two processes are parallel if they have the same immediate superior.
 A process can create an inferior process but not a parallel or
 superior process.

 −−−−−−−−−−−−−−
 | Top−Level |
 | Process |
 −−−−−−−−−−−−−−
 |
 −−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−
 | | |
 −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−
 | Process 1 | | Process 2 | | Process 3 |
 −−−−−−−−−−−−− −−−−−−−−−−−−− −−−−−−−−−−−−−
 | |
 −−−−−−−−−−−−− −−−−−−−−−−−−−
 | Process 4 | | Process 5 |
 −−−−−−−−−−−−− −−−−−−−−−−−−−

 5−1

 PROCESS STRUCTURE

 Process 1 is the superior process of process 4, and process 3 is the
 superior of process 5. Processes 4 and 5 are the inferiors of
 processes 1 and 3, respectively. Process 2 has no inferior process.
 Processes 1, 2 and 3 are parallel because they have the same superior
 process (the top−level process). Processes 4 and 5, although at the
 same depth in the structure, are not parallel because they do not have
 the same superior process. Process 1 created process 4 but could not
 have created any other process shown in the structure above.

 5.1 USES FOR MULTIPLE PROCESSES

 A multiple−process job structure allows:

 1. One job to have more than one program runnable at the same
 time. These programs can be independent programs, each one
 compiled, debugged, and loaded separately. Each program can
 then be placed in a separate process. These processes can be
 parallel to each other, but are inferior to the main process
 that created them. This use allows parallel execution of the
 individual programs.

 2. One process to wait for an event to occur (for example, the
 completion of an I/O operation) while another process
 continues its computations. Communication between the two
 processes is such that when the event occurs, the process
 that is computing can be notified via the software interrupt
 system. This use allows two processes within a job to
 overlap I/O with computations.

 One application of a multiple−process job structure is the following
 situation: a superior process is responsible for accepting input from
 various terminals. After receiving this input, the process sends it
 to various inferior processes as data. These inferior processes can
 then initiate other processes, for example, to write reports on the
 data that was received.

 5−2

 PROCESS STRUCTURE

 −−−−−−−−−−−−−−−−−−
 −−−−−−−−− | | −−−−−−−−−
 | | | Process that | | |
 | TTY |−−−−−−| Accepts input |−−−−−| TTY |
 | | | from Terminals | | |
 −−−−−−−−− | | −−−−−−−−−
 −−−−−−−−−−−−−−−−−−
 |
 −−−−−−−−−−−−−|−−−−−−−−−−−−−
 | | |
 | | |
 −−−−−−− −−−−−−− −−−−−−−
 | | | | | | Processes that
 | | | | | | Receive the
 | | | | | | input as Data
 −−−−−−− −−−−−−− −−−−−−−
 | | |
 | | |
 −−−−−−− −−−−−−− −−−−−−−
 | | | | | | Processes that
 | | | | | | Write Reports
 | | | | | | on the Data
 −−−−−−− −−−−−−− −−−−−−−

 Another application is that used for the user interface on the
 DECSYSTEM−20. On the DECSYSTEM−20, the top−level process in the job
 structure is the Command Language. This process services the user at
 the terminal by accepting input. When the user runs a program (for
 example, MACRO, FORTRAN), the Command Language process creates an
 inferior process, places the requested program in it, and executes it.
 The Command Language can then wait for an event to occur, either from
 the program or from the user. An event from the program can be its
 completion, and an event from the user can be the typing of a certain
 terminal key (CTRL/C, for example).

 5.2 PROCESS COMMUNICATION

 A process can communicate with or control other processes in the
 system in several ways:

 o direct process control

 o software interrupts

 o IPCF and ENQ/DEQ facilities

 o memory sharing

 5−3

 PROCESS STRUCTURE

 5.2.1 Direct Process Control

 A process can create and control other processes inferior to it within
 the job structure. The superior process can cause the inferior
 process to begin execution and then to suspend and later resume
 execution. After the inferior process has completed its tasks, the
 superior process can delete the inferior from the job structure.

 Some of the monitor calls used for direct process control are:
 CFORK%, to create a process; SFORK%, to start a process; WFORK%, to
 wait for a process to terminate; RFSTS%, to obtain the status of a
 process; and KFORK%, to delete a process. Refer to the TOPS−20
 Monitor Calls Reference Manual for descriptions of additional monitor
 calls dealing with process control.

 5.2.2 Software Interrupts

 The software interrupt facility enables a process to receive
 asynchronous signals from other processes, the system, or the terminal
 user or to receive signals as a result of its own execution. For
 example, a superior process can enable the interrupt system so that it
 receives an interrupt when one of its inferiors terminates. In
 addition, processes within a job structure can explicitly generate
 interrupts to each other for communication purposes.

 Some of the monitor calls used when communication occurs via the
 software interrupt system are: SIR%, to specify the interrupt tables;
 EIR%, to enable the interrupt system; AIC%, to activate the interrupt
 channels; and IIC%, to initiate an interrupt on a channel. Refer to
 Chapter 4 and Section 5.10 for more information.

 5.2.3 IPCF and ENQ/DEQ Facilities

 The Inter−Process Communication Facility (IPCF) enables processes and
 jobs to communicate by sending and receiving informational messages.
 The MSEND% call is used to send a message, the MRECV% call is used to
 receive a message, and the MUTIL% call is used to perform utility
 functions. Refer to Chapter 7 for descriptions of these calls.

 The ENQ/DEQ facility allows cooperating processes to share resources
 and facilitates dynamic resource allocation. The ENQ% call is used to
 obtain a resource, the DEQ% call is used to release a resource, and
 the ENQC% call is used to obtain status about a resource. Refer to
 Chapter 6 for descriptions of these calls.

 5−4

 PROCESS STRUCTURE

 5.2.4 Memory Sharing

 Each page or section in a process’ address space is either private to
 the process or shared with other processes. Pages are shared among
 processes when the same page is represented in more than one process’
 address space. This means that two or more processes can identify and
 use the same page of physical storage. Even when several processes
 have identified the same page, each process can have a different
 access to that page, such as access to read or write that page.

 A type of page access that facilitates sharing is the copy−on−write
 access. A page with this access remains shared as long as all
 processes read the page. As soon as a process writes to the page, the
 system makes a private copy of the page for the process doing the
 writing. Other processes continue to read and execute the original
 page. This access provides the capability of sharing as much as
 possible but still allows the process to change its data without
 changing the data of other processes. A monitor call used when
 sharing memory is PMAP%. Refer to Section 5.6.2 for more information.

 5.3 PROCESS IDENTIFIERS

 In order for processes to communicate with each other, a process must
 have an identifier, or handle, for referencing another process. When
 a process creates an inferior process, it is given a handle on that
 inferior. This handle is a number in the range 400001 to 400777 and
 is meaningful only to the process to which it is given (that is, to
 the superior process). For example, if process A creates process B,
 process A is given a handle (for example, 400003) on process B.
 Process A then specifies this handle when it uses monitor calls that
 refer to process B. However, process B is not known by this handle to
 any other process in the structure, including itself. The handle
 400003 may in fact be known to process B, but it would describe a
 process inferior to process B. For this reason, process handles are
 sometimes called "relative fork handles" because they are relative to
 the process that created them.

 There are several standard process handles that are never assigned by
 the system but have a specific meaning when used by any process in the
 structure. These handles are used when a process needs to communicate
 with a process other than its immediate inferior or with multiple
 processes at once. These handles are described in Table 5−1.

 5−5

 PROCESS STRUCTURE

 Table 5−1: Process Handles

 __

 Number Symbol Meaning
 __

 400000 .FHSLF The current process (or self).

 400000+n Process n, relative to the current
 process.

 200000 FH%EPN Extended page number (see PM%EPN in
 PMAP%). When used in conjunction with
 the above two forms, this bit
 indicates that addresses and/or page
 numbers are interpreted as absolute,
 not relative to the PC section of the
 program executing the JSYS. This bit
 has no meaning for programs that do
 not use extended addressing.

 −1 .FHSUP The immediate superior of the current
 process.

 −2 .FHTOP The top−level process in the job
 structure.

 −3 .FHSAI The current process and all of its
 inferiors.

 −4 .FHINF All of the inferiors of the current
 process.

 −5 .FHJOB All processes in the job structure.
 __

 Consider the job structure below.

 5−6

 PROCESS STRUCTURE

 −−−−−−−
 | A |
 −−−−−−−
 |
 −−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−
 | | |
 −−−−−−− −−−−−−− −−−−−−−
 | B | | C | | D |
 −−−−−−− −−−−−−− −−−−−−−
 |
 −−−−−−−−|−−−−−−−
 | |
 −−−−−−− −−−−−−−
 | E | | F |
 −−−−−−− −−−−−−−
 |
 −−−−−−−|−−−−−−−−
 | |
 −−−−−−− −−−−−−−
 | G | | H |
 −−−−−−− −−−−−−−

 The following indicates the specific process or processes being
 referenced if process E gives the handle:

 .FHSLF refers to process E
 .FHSUP refers to process D
 .FHTOP refers to process A
 .FHSAI refers to processes E, G, and H
 .FHINF refers to processes G and H
 .FHJOB refers to processes A through H

 The process must have the appropriate capability enabled in its
 capability word to use the handles .FHSUP, .FHTOP, and .FHJOB (refer
 to Section 5.5.1).

 Process E can reference one of its inferiors (for example, G) with the
 handle it was given when it created the inferior. Process E can
 reference other processes in the structure (for example, F) by
 executing the GFRKS% monitor call to obtain a handle on the desired
 process. Refer to the TOPS−20 Monitor Calls Reference Manual for a
 description of the GFRKS% call.

 5.4 OVERVIEW OF MONITOR CALLS FOR PROCESSES

 Monitor calls exist for creating, loading, starting, suspending,
 resuming, interrupting, and deleting processes. When a process is
 created, its address space is assigned, and the process is added to
 the job structure of the creating process. The contents of its

 5−7

 PROCESS STRUCTURE

 address space can be specified at the time the process is created or
 at a later time. The process can also be started at the time it is
 created. A process remains potentially runnable until it is
 explicitly deleted or its superior is deleted.

 A process may be suspended if one of the following conditions occurs:

 1. The process executes an instruction that causes a software
 interrupt to occur, and it is not prepared to process the
 interrupt.

 2. The process executes the HALTF% monitor call.

 3. The superior process requests suspension of its inferior.

 4. The superior process is suspended. When a process is
 suspended, all of its inferior processes are also suspended.

 5. A monitor call is trapped. (Refer to TFORK% monitor call in
 the TOPS−20 Monitor Calls Reference Manual).

 5.5 CREATING A PROCESS

 A process creates an inferior process by executing the CFORK% (Create
 Process) monitor call. This monitor call allows the caller to specify
 the address space, capabilities, initial contents of the ACs, and PC
 for the inferior process and to start the execution of the inferior.

 The CFORK% call accepts two words of arguments in AC1 and AC2.

 AC1: characteristics for the inferior in the left half, and PC
 address for the inferior in the right half.

 AC2: address of a 20 (octal) word block containing the AC
 values for the inferior.

 The characteristics for the inferior process are described in Table
 5−2.

 5−8

 PROCESS STRUCTURE

 Table 5−2: Inferior Process Characteristic Bits

 __

 Bit Symbol Meaning
 __

 0 CR%MAP Set the map of the inferior process to the
 same as the map of the superior (creating)
 process. This means that the superior and
 the inferior will share the same address
 space. Changes made by one process will be
 seen by the other process.

 If this bit is not on in the call, the
 inferior’s map will contain all zeros. If
 desired, the creating process can then use
 PMAP or GET to add pages to the inferior’s
 map.

 1 CR%CAP Set the capability word of the inferior
 process to the same as the capability word
 of the superior process. (Refer to Section
 5.5.1 for the description of the capability
 word.)

 If this bit is not on in the call, the
 inferior will have no special capabilities.

 2 Reserved for Digital (must be 0).

 3 CR%ACS Set the ACs of the inferior process to the
 values beginning at the address given in
 AC2.

 If this bit is not on in the call, the
 inferior’s ACs will be set to zero, and the
 contents of AC2 is ignored.

 4 CR%ST Set the PC for the inferior process to the
 address given in the right half of AC1 and
 start execution of the inferior.

 If this bit is not on in the call, the
 right half of AC1 is ignored, and the
 inferior is not started. If desired, the
 creating process can then use SFORK% or
 XSFRK% to start the newly created process.

 18−35 CR%PCV PC value for inferior process if CR%ST is
 on.
 __

 5−9

 PROCESS STRUCTURE

 If execution of the CFORK% call is not successful, the inferior
 process is not created and an error code is returned, as described in
 Section 1.2.2.

 If execution of the CFORK% call is successful, the inferior process is
 created and its process handle is returned in the right half of AC1.
 This handle is then used by the superior process when communicating
 with its inferior process. The execution of the program in the
 superior process continues at the second instruction following the
 CFORK% call. The inferior begins execution at the location contained
 in bits 18−35 (CR%PCV) if CR%ST is specified.

 Assume that process A executes the CFORK% monitor call twice to create
 two parallel inferior processes. This is represented pictorially
 below.

 −−−−−−−−−−−−−−−−−−−−−−−−−
 | Process A |
 | Creates Process B |
 | by Executing a CFORK |
 −−−−−−−−−−−−−−−−−−−−−−−−−
 |
 |
 −−−−−−−−−−−−−−−−−−−−−−−−−
 | Process B is Created |
 | and Its Handle is |
 | |
 −−−−−−−−−−−−−−−−−−−−−−−−−

 −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −− −−

 −−−−−−−−−−−−−−−−−−−−−−−−−
 | Process A Executes |
 | Another CFORK to |
 | Create Process C |
 −−−−−−−−−−−−−−−−−−−−−−−−−
 |
 −−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−
 | |
 −−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−
		Process C is Created
Process B		and Its Handle
		Given to Process A
 −−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−

 Note that process A has been given two handles, one for process B and
 one for process C. Process A can refer to either of its inferiors by
 giving the appropriate handle or to both of its inferiors by giving a
 handle of −4 (.FHINF).

 5−10

 PROCESS STRUCTURE

 5.5.1 Process Capabilities

 When a new process is created, it is given the same capabilities as
 its superior, or it is given no special capabilities. This is
 indicated by the setting of the CR%CAP bit in the CFORK% call. The
 capabilities for a process are indicated by two capability words. The
 first word indicates if the capability is available to the process,
 and the second word indicates if the capability is enabled for the
 process. This second word is the one being set by the CR%CAP bit in
 the CFORK% call.

 Types of capabilities represented in the capability words are job,
 process, and user capabilities. Each capability corresponds to a
 particular bit in the capability words and thus can be activated and
 protected independently of the other capabilities. Refer to the
 TOPS−20 Monitor Calls Reference Manual for more information on the
 capability words.

 5.6 SPECIFYING THE CONTENTS OF THE ADDRESS SPACE OF A PROCESS

 Once a process is created, the contents of its address space can be
 specified. This can be accomplished in one of three ways. As
 mentioned in Section 5.5, bit CR%MAP can be set in the CFORK% call to
 indicate that the address space of the inferior process is to be the
 same as the address space of the creating process. In addition, the
 creating process can execute the GET% monitor call to map specified
 pages from a file into the address space of the inferior process.
 Finally, the creating process can execute the PMAP% monitor call to
 map specified pages from another process into the address space of the
 inferior process.

 If the creating process does not specify the contents of the
 inferior’s address space, the address space will be filled with zeros.

 5.6.1 GET% Monitor Call

 The GET% monitor call gets a save file, copying or mapping it into the
 process as appropriate. It updates the monitor’s data base for the
 process by copying the entry vector and the list of program data
 vector addresses (PDVAs) from the save file. (See the .POADD function
 of the PDVOP% monitor call.)

 This call can be executed for either sharable or nonsharable save
 files that were created with the SSAVE% or SAVE% monitor call,
 respectively. The file must not be open by any process in the user’s
 job. (Refer to the TOPS−20 Monitor Calls Reference Manual for more
 information regarding the PDVOP%, SSAVE%, and SAVE% monitor calls.)

 5−11

 PROCESS STRUCTURE

 The GET% monitor call accepts two words of arguments in AC1 and AC2.
 The first word specifies the handle of the desired process, flag bits,
 and the JFN of the desired file. The second word specifies where the
 pages from the file are to be placed in the address space of the
 process. Thus,

 AC1: process handle,,flag bits and a JFN

 AC2: lowest process page number in left half, and highest
 process page number in right half; or the address of an
 argument block. If this AC contains page numbers, those
 page numbers control the parts of memory that are loaded
 when GT%ADR is on in AC1.

 Table 5−3 describes the bits that can be set in AC1.

 Table 5−3: GET% Flag Bits

 __

 Bit Symbol Meaning
 __

 19 GT%ADR Use the memory address limits given in AC2.
 If this bit is off, all existing pages of
 the file (according to its directory) are
 mapped.

 20 GT%PRL Preload the pages being mapped (move the
 pages immediately.) If this bit is off, the
 pages are read in from the disk when they
 are referenced.

 21 GT%NOV Do not overlay existing pages and do return
 an error. If this bit is off, existing
 pages will be overlaid.

 22 GT%ARG If this bit is on, AC2 contains the address
 of an argument block.

 24−25 GT%JFN JFN of the save file.
 __

 The format of the argument block is described in Table 5−4.

 5−12

 PROCESS STRUCTURE

 Table 5−4: GET% Argument Block

 __

 Word Symbol Meaning
 __

 0 .GFLAG Flags that indicate how the rest of the
 argument block is to be used.

 1 .GLOW Number of the lowest page in the process
 into which a file page gets loaded. This
 page must be within the section specified
 by .GBASE.

 2 .GHIGH Number of the highest page in the process
 into which a file page gets loaded. This
 page must be within the section specified
 by .GBASE.

 3 .GBASE Number of the section into which the file
 pages are loaded. You can specify the
 section for single−section save files only;
 use of this word with a multiple−section
 save file causes an error. The file pages
 are loaded into this section of memory
 regardless of the section specified in the
 save file.
 __

 Table 5−5 describes the flag bits defined for use in .GFLAG.

 Table 5−5: GET% Argument Block Flags

 __

 Bit Symbol Meaning
 __

 0 GT%LOW .GLOW contains the number of the lowest
 page within the process to use.

 1 GT%HGH .GHIGH contains the number of the highest
 page within the process to use.

 2 GT%BAS .GBASE contains the number of the section
 to use.
 __

 5−13

 PROCESS STRUCTURE

 When the pages of the file are mapped into pages in the process’s
 address space, the previous contents of the process pages are
 overwritten. Any full pages in the process that are not overwritten
 are unchanged. Any portions of process pages for which there is no
 data in the file are filled with zeros.

 For example, a GET% call executed for a file that contains 2 1/2 pages
 sets up the process’ address space as shown in the following diagram.

 Process File
 −−−−−−−−−−−− − − − − − − − − −−−−−−−−−
 Page 1 | Data | / | Data | Page 1
 | | | | |
 | | | | |
 | | / GET | |
 |−−−−−−−−−−| \ Call |−−−−−−−|
 Page 2 | Data | | | Data | Page 2
 | | | | |
 |−−−−−−−−−−| | |−−−−−−−|
 Page 3 | Data | \ | Data | Page 3
 |−−−−−−−−−−| − − − − − − − − |−−−−−−−|
 | | | EOF |
 | | | |
 | 0 | | |
 |−−−−−−−−−−| −−−−−−−−−
 | |
 Page 4 − |Unchanged |
 Page 512 | |
 −−−−−−−−−−−−

 After execution of the GET% call, control returns to the user’s
 program at the instruction following the call. If an error occurs, a
 software interrupt is generated, which the program can process via the
 software interrupt system.

 5.6.2 PMAP% Monitor Call

 The PMAP% monitor call is used to map pages from one process to the
 address space of a second process. Data is not actually transferred;
 only the contents of the page map of the second (that is, destination)
 process are changed.

 The PMAP% monitor call accepts three words of arguments in AC1 through
 AC3. The first word contains the handle and page number of the first
 page to be mapped in the source process (that is, the process whose
 pages are being mapped). The second word contains the handle and page
 number of the first page to be mapped in the destination process (that
 is, the process into which the pages are being mapped). The third

 5−14

 PROCESS STRUCTURE

 word contains a count of the number of pages to map and bits
 indicating the access that the destination process will have to the
 pages mapped. Thus,

 AC1: source process handle in the left half, and page number in
 the process in the right half.

 AC2: destination process handle in the left half, and page
 number in the process in the right half.

 AC3: count of number of pages to map and the access bits.

 The count and access bits that can be specified in AC3 are described
 in Section 3.5.6.1.

 Upon successful execution of the PMAP% call, addresses in the
 destination process actually refer to addresses in the source process.
 The contents of the destination page previous to the execution of the
 call have been deleted. The access requested in the PMAP% call is
 granted if it does not conflict with the current access of the
 destination page (that is, an AND operation is performed between the
 specified access and the current access). Control returns to the
 user’s program at the instruction following the PMAP% call. If an
 error occurs, an illegal instruction trap is generated, which the
 program can process via the software interrupt system or with an ERJMP
 or ERCAL instruction.

 5.7 STARTING AN INFERIOR PROCESS

 A program in an inferior process can be started in one of two ways.
 As mentioned in Section 5.5, the superior process can specify in the
 CFORK% call the PC for the inferior process and start its execution.
 Alternatively, the superior process, after executing the CFORK% call
 to create an inferior process, can execute the SFORK% (Start Process)
 monitor call to start it.

 The SFORK% monitor call accepts two words of arguments in AC1 and AC2.

 AC1: flags,,process handle

 Flags:

 SF%CON(1B0) Used to continue a process that has
 previously halted. If SF%CON is set, the
 address in AC2 is ignored, and the process
 continues from where it was halted.

 AC2: the PC of the process being started. The PC contains flags
 in the left half and the process starting address in the
 right half. This call obtains the section number of the PC
 from the entry vector of the process.

 5−15

 PROCESS STRUCTURE

 There are two alternative ways to start processes: XSFRK% (see
 Section 8.3.2) or SFRKV% (see the TOPS−20 Monitor Calls Reference
 Manual).

 The process handle given in AC1 cannot refer to a superior process, to
 more than one process (for example, .FHINF), or to a process that has
 already been started.

 After execution of the SFORK% call, control returns to the user’s
 program at the instruction following the call. If an error occurs, a
 software interrupt is generated, which the program can process via the
 software interrupt system.

 5.8 INFERIOR PROCESS TERMINATION

 The superior process has one of two ways in which it can be notified
 when one or more of its inferiors terminate execution: via the
 software interrupt system or by executing the WFORK% monitor call. An
 inferior process will terminate normally when it executes a HALTF%
 monitor call. Alternatively, the process will terminate abnormally
 when it executes an instruction that generates a software interrupt,
 such as an illegal instruction, and it has not activated the
 appropriate channel.

 By activating channel .ICIFT (channel 19) for inferior process
 termination and enabling the software interrupt system, the superior
 process will receive an interrupt when one of its inferiors
 terminates. (Refer to Section 4.6 for information on activating
 channel .ICIFT.) The interrupt occurs when any inferior process
 terminates. Use of the interrupt system allows the superior to do
 other processing until an interrupt occurs, indicating that an
 inferior process has terminated.

 In some cases, however, the superior cannot do additional processing
 until either a specific process or all of its inferior processes have
 completed execution. If this is the case, the superior process can
 execute the WFORK% (Wait Process) monitor call. This call blocks the
 superior until one or all of its inferiors have terminated.

 The WFORK% monitor call accepts one argument in AC1, the handle of the
 desired process. This handle can be .FHINF (−4) to block the superior
 until all inferiors terminate, but cannot be a handle on a superior
 process.

 After execution of the WFORK% monitor call, control returns to the
 user’s program at the instruction following the call, when the
 specified process or all of the inferior processes terminate. If an
 error occurs, it generates a software interrupt, which the program can
 process via the software interrupt system.

 5−16

 PROCESS STRUCTURE

 5.9 INFERIOR PROCESS STATUS

 The superior process can obtain the status of one of its inferiors by
 executing the RFSTS% (Read Process Status) monitor call. This call
 returns the status and PC words of the given inferior process.

 The short form of the RFSTS% monitor call accepts one argument in AC1,
 the handle of the desired process. This handle cannot refer to a
 superior process or to more than one process. The long form accepts
 two argument words: flags,, process handle in AC1 and the address of
 the status return block in AC2. In the long form, RF%LNG (bit 0) is
 set in AC1 and bits 1−17 are unused (must be zero).

 After execution of the short form of the RFSTS% call, control returns
 to the user’s program at the instruction following the call. If the
 RFSTS% call is successful, AC1 contains the status word of the given
 process and AC2 contains the PC word. The status word is shown in
 Table 5−6.

 Table 5−6: Process Status Word

 __

 Bit Symbol Meaning
 __

 0 RF%FRZ The process is suspended (that is, frozen).
 If this bit is not on, the process is not
 suspended.

 1−17 RF%STS The status of the process.

 Value Symbol Meaning

 0 .RFRUN The process is
 runnable.

 1 .RFIO The process is halted
 waiting for I/O

 2 .RFHLT The process is halted
 by a HFORK% or HALTF%
 monitor call or was
 never started.

 3 .RFFPT The process is halted
 by the occurrence of a
 software interrupt for
 which it was not
 prepared to handle.

 5−17

 PROCESS STRUCTURE

 The right half of the
 status word contains
 the number of the
 channel on which the
 interrupt occurred.

 4 .RFWAT The process is halted
 waiting for another
 process to terminate.

 5 .RFSLP The process is halted
 for a specified amount
 of time.

 6 .RFTRP The process is
 dismissed because it
 was intercepted by its
 superior.

 7 .RFABK The process is
 dismissed because
 address break was
 encountered.

 18−35 RF%SIC The channel number on which an interrupt
 occurred, which the process was not
 prepared to handle (see process status code
 .RFFPT above).
 __

 The RFSTS% call returns with −1 (fullword) in AC3 if the specified
 handle is assigned but refers to a deleted process. The call
 generates an illegal instruction interrupt if the handle is
 unassigned.

 In the long form of the RFSTS% monitor call, RF%LNG is set in AC1 and
 AC2 contains the address of a status−return block. On the return, AC1
 and AC2 are not modified. The status−return block is described in
 Table 5−7.

 Table 5−7: RFSTS% Status−Return Block

 __

 Word Symbol Meaning
 __

 0 .RFCNT Count of words returned in this block in
 the left half, and count of maximum number
 of words to return in right half (including

 5−18

 PROCESS STRUCTURE

 this word). The right half of this word is
 specified by the user.

 1 .RFPSW Process status word. This word has the
 same format as AC1 on a return from a short
 call. If a valid, but unassigned, process
 handle was specified in AC1, then this word
 contains −1 and no other words are
 returned.

 2 .RFPFL Process PC flags. These are the same flags
 returned in AC2 on a short call.

 3 .RFPPC Process PC. This is the address; no flags
 are returned in this word.

 4 .RFSFL Status flag word.

 Flags:

 Bit Symbol Meaning

 B0 RF%EXO Process is execute−only.
 __

 If an error occurs during execution of the RFSTS% call, a software
 interrupt is generated which the program can process via the software
 interrupt system.

 5.10 PROCESS COMMUNICATION

 A superior process can communicate with its inferiors by sharing the
 same pages of memory. This sharing is accomplished with the CFORK%
 (bit CR%MAP) or the PMAP% monitor call. When the superior executes
 either of these calls, both the superior and the inferior share the
 same pages. Changes made to the shared pages by either process will
 be seen by the other process.

 Alternatively, processes can communicate via the software interrupt
 system. The superior process can cause a software interrupt to be
 generated in an inferior process by executing the IIC% (Initiate
 Interrupt on Channel) monitor call. For this type of communication to
 occur, the inferior’s interrupt channels must be activated and its
 interrupt system enabled.

 The IIC% monitor call accepts two words of arguments in AC1 and AC2.
 The handle of the process to receive the interrupt is given in the
 right half of AC1. AC2 contains a 36−bit word, with each bit
 representing one of the 36 software channels. If a bit is on in AC2,

 5−19

 PROCESS STRUCTURE

 a software interrupt is initiated on the corresponding channel. For
 example, if bit 5 is on in AC2, an interrupt is initiated on channel
 5.

 Thus,

 AC1: process handle in the right half

 AC2: 36−bit word, with bit n on to initiate a software interrupt
 on channel n

 The process handle given cannot refer to a superior process or to more
 than one process.

 After execution of the IIC% call, control returns to the user’s
 program at the instruction following the call. If an error occurs, it
 generates a software interrupt which the program can process via the
 software interrupt system.

 5.11 DELETING AN INFERIOR PROCESS

 A process is deleted from the job structure when the superior process
 executes the KFORK% (Kill Process) monitor call. When a process is
 deleted, its address space, its handle, and any JFNs acquired by the
 process are released. If the process being deleted has processes
 inferior to it, the inferiors are also deleted. For example, in the
 structure:

 −−−−−−−−−−−−−−−
 | Process A |
 −−−−−−−−−−−−−−−
 |
 |
 −−−−−−−−−−−−−−−
 | Process B |
 −−−−−−−−−−−−−−−
 |
 |
 −−−−−−−−−−−−−−−
 | Process C |
 −−−−−−−−−−−−−−−

 if process A deletes process B by executing a KFORK% call, process C
 is also deleted.

 The KFORK% monitor call accepts one argument in the right half of AC1,
 the handle of the process to be deleted. This handle cannot refer to
 a superior process, to more than one process (for example, .FHINF), or

 5−20

 PROCESS STRUCTURE

 to the process executing the call (that is, .FHSLF). The RESET%
 monitor call is used to reinitialize the current process; refer to
 Section 2.6.1.

 After execution of the KFORK% call, control returns to the user’s
 program at the instruction following the call. If an error occurs, a
 software interrupt is generated, which the program can process via the
 software interrupt system.

 5.12 PROCESS EXAMPLES

 Example 1 − This program creates an inferior process to provide timing
 interrupts.

 TITLE TIMINT − AN INFERIOR PROCESS PROVIDING TIMING INTERRUPTS

 SEARCH MONSYM
 SEARCH MACSYM
 .REQUIRE SYS:MACREL

 STDAC. ;DEFINE STANDARD ACS

 START: RESET% ;RELEASE FILES, ETC.
 MOVE P,[IOWD PDLSIZ,PDL] ;INITIALIZE STACK
 MOVX T1,CR%MAP ;MAKE NEW PROCESS SHARE THIS
 ;PROCESS’S MEMORY
 CFORK% ;CREATE A NEW PROCESS
 EJSHLT ;UNEXPECTED FATAL ERROR
 MOVEM T1,HANDLE ;SAVE PROCESS HANDLE

 ;HERE TO START THE INFERIOR PROCESS

 STPROC: SETZB T4,FLAG ;INITIALIZE COUNTER AND FLAG
 MOVE T1,HANDLE ;GET PROCESS HANDLE
 MOVEI T2,SLEEP ;GET ADDRESS TO START PROCESS
 SFORK% ;START THE NEW PROCESS
 EJSHLT ;UNEXPECTED FATAL ERROR

 ; MAIN PROCESSING LOOP

 LOOP: AOS T4 ;INCREMENT COUNTER
 SKIPN FLAG ;HAS TIME ELAPSED YET?
 JRST LOOP ;NO, GO DO MORE PROCESSING

 ; HERE WHEN LOWER PROCESS HAS INTERRUPTED

 TMSG <
 Counter has reached > ;OUTPUT FIRST PART OF MESSAGE
 MOVX T1,.PRIOU ;GET PRIMARY OUTPUT DESIGNATOR
 MOVE T2,T4 ;GET VALUE OF COUNTER

 5−21

 PROCESS STRUCTURE

 MOVEI T3,^D10 ;USE DECIMAL RADIX
 NOUT% ;OUTPUT CURRENT COUNTER VALUE
 EJSERR ;PRINT ERROR MESSAGE AND CONTINUE
 TMSG <
 > ;MOVE TO A NEW LINE
 JRST STPROC ;CONTINUE COUNTING

 ; PROGRAM PERFORMED BY INFERIOR PROCESS TO WAIT FOR ONE−HALF MINUTE

 SLEEP: MOVX T1,^D30*^D1000 ;ONE−HALF MINUTE IN MILLISECONDS
 DISMS% ;WAIT FOR SPECIFIED TIME
 SETOM FLAG ;TELL SUPERIOR TIME HAS ELAPSED
 HALTF% ;FINISHED

 ; CONSTANTS AND STORAGE

 PDLSIZ==50 ;SIZE OF THE STACK
 PDL: BLOCK PDLSIZ ;STACK
 HANDLE: BLOCK 1 ;INFERIOR PROCESS HANDLE
 FLAG: BLOCK 1 ;INTERRUPT FLAG

 END START

 Example 2 − This program illustrates how an inferior process may be
 used as a source of timer interrupts. The main program increments a
 counter. It has an inferior process running for the sole purpose of
 timing 10 second intervals. Each time the inferior process has timed
 10 seconds, it stops and interrupts the main program. The main
 program then reports how many more times it has incremented the
 counter since the last 10 second interrupt.

 TITLE TRMINT − FORK TERMINATION INTERRUPTS
 SEARCH MONSYM
 SEARCH MACSYM
 .REQUIRE SYS:MACREL

 STDAC. ;DEFINE STANDARD ACS

 START: RESET% ;RELEASE FILES, ETC.
 MOVE P,[IOWD PDLSIZ,PDL] ;INITIALIZE STACK

 ; SET UP THE INTERRUPT SYSTEM

 MOVX T1,.FHSLF ;GET PROCESS HANDLE FOR THIS FORK
 MOVE T2,[LEVTAB,,CHNTAB] ;GET TABLE ADDRESSES
 SIR% ;SET INTERRUPT TABLE ADDRESSES
 EJSHLT ;UNEXPECTED FATAL ERROR
 MOVX T2,1B<.ICIFT> ;GET PROCESS TERMINATION CHANNEL BIT
 AIC% ;ACTIVATE PROCESS TERMINATION CHANNEL
 EJSHLT ;UNEXPECTED FATAL ERROR
 EIR% ;ENABLE INTERRUPT SYSTEM
 EJSHLT ;UNEXPECTED FATAL ERROR

 5−22

 PROCESS STRUCTURE

 ; CREATE AND START THE INFERIOR PROCESS

 MOVX T1,CR%MAP+CR%ST+SLEEP
 CFORK% ;CREATE AND START TIMER AT SLEEP
 EJSHLT ;UNEXPECTED FATAL ERROR
 MOVEM T1,HANDLE ;SAVE PROCESS HANDLE

 ;INITIALIZE THE COUNTER

 STPROC: SETZB T4,OLDT4 ;CLEAR COUNTER

 ;MAIN LOOP OF THE PROGRAM WHICH JUST KEEPS COUNTING. (REAL
 ;APPLICATION WOULD PRESUMABLY HAVE A MORE USEFUL MAIN PROGRAM.)

 LOOP: AOJA T4,LOOP ;JUST KEEP INCREMENTING
 ; HERE WHEN LOWER PROCESS HAS INTERRUPTED

 PROINT: MOVEM P,IACS+P ;SAVE STACK POINTER
 MOVEI P,IACS ;MAKE POINTER FOR REST OF ACS
 BLT P,IACS+CX ;SAVE REST OF ACS
 MOVE P,IACS+P ;RESTORE P
 TMSG <NUMBER OF COUNTS: >
 MOVX T1,.PRIOU ;GET PRIMARY OUTPUT DESIGNATOR
 EXCH T4,OLDT4 ;SAVE NEW COUNTER VALUE
 SUB T4,OLDT4 ;FIND NUMBER OF COUNTS SINCE LAST TIME
 MOVM T2,T4 ;MAKE IT POSITIVE
 MOVEI T3,^D10 ;USE DECIMAL RADIX
 NOUT% ;OUTPUT CURRENT COUNTER VALUE
 EJSERR ;PRINT ERROR MESSAGE AND CONTINUE
 TMSG <
 > ;MOVE TO A NEW LINE
 MOVE T1,HANDLE ;GET PROCESS HANDLE
 MOVEI T2,SLEEP ;GET ADDRESS TO START PROCESS
 SFORK% ;START THE NEW PROCESS
 EJSHLT ;UNEXPECTED FATAL ERROR
 MOVSI P,IACS ;GET POINTER TO SAVED ACS
 BLT P,P ;RESTORE SAVED ACS
 DEBRK% ;DISMISS INTERRUPT
 ;THE FOLLOWING IS EXECUTED AS A LOWER PROCESS TO DO THE
 ;TIMING. IT SLEEPS FOR 10 SECONDS AND THEN STOPS.

 SLEEP: MOVX T1,^D10*^D1000 ;10 SECONDS IN MILLISECONDS
 DISMS% ;SLEEP
 HALTF% ;STOP AND INTERRUPT THE MAIN PROGRAM

 ; CONSTANTS AND STORAGE

 PDLSIZ==50 ;SIZE OF THE STACK
 PDL: BLOCK PDLSIZ ;STACK
 CHNTAB: REPEAT ^D19,<EXP 0> ;CHANNELS 0−18 ARE NOT USED
 1,,PROINT ;LEVEL 1 PROCESS TERMINATION CHANNEL
 REPEAT ^D15,<EXP 0> ;REMAINING CHANNELS ARE NOT USED

 5−23

 PROCESS STRUCTURE

 LEVTAB: RETPC1 ;RETURN PC STORED AT RETPC1 FOR
 ;LEVEL 1
 0 ;LEVEL 2 NOT USED
 0 ;LEVEL 3 NOT USED
 HANDLE: BLOCK 1 ;INFERIOR PROCESS HANDLE
 RETPC1: BLOCK 1 ;RETURN PC STORED HERE ON INTERRUPTS
 OLDT4: BLOCK 1 ;HOLDS TIMER VALUE AT LAST INTERRUPT
 IACS: BLOCK 20 ;STORAGE FOR ACS DURING INTERRUPTS

 END START

 Example 3 − This program creates an inferior process which waits until
 a line has been typed on the terminal.

 TITLE FRKDOC − AN INFERIOR PROCESS WAITS UNTIL A LINE IS TYPED

 SEARCH MONSYM
 SEARCH MACSYM
 .REQUIRE SYS:MACREL

 STDAC. ;DEFINE STANDARD ACS

 START: RESET% ;RELEASE FILES, ETC.
 MOVE P,[IOWD PDLSIZ,PDL] ;INITIALIZE STACK
 MOVX T1,CR%MAP ;MAKE NEW PROCESS SHARE THIS
 ;PROCESS’S MEMORY
 CFORK% ;CREATE A NEW PROCESS
 EJSHLT ;UNEXPECTED FATAL ERROR
 SETZB T4,FLAG ;INITIALIZE COUNTER AND FLAG
 MOVEI T2,GETCOM ;GET ADDRESS TO START PROCESS
 SFORK% ;START THE NEW PROCESS
 EJSHLT ;UNEXPECTED FATAL ERROR

 ; MAIN PROCESSING LOOP

 LOOP: AOS T4 ;INCREMENT COUNTER
 SKIPN FLAG ;HAS TIME ELAPSED YET?
 JRST LOOP ;NO, GO DO MORE PROCESSING

 ; HERE WHEN INFERIOR PROCESS HAS INPUT A LINE OF TEXT

 TMSG <
 Counter has reached > ;OUTPUT FIRST PART OF MESSAGE
 MOVX T1,.PRIOU ;GET PRIMARY OUTPUT DESIGNATOR
 MOVE T2,T4 ;GET VALUE OF COUNTER
 MOVEI T3,^D10 ;USE DECIMAL RADIX
 NOUT% ;OUTPUT CURRENT COUNTER VALUE
 EJSERR ;PRINT ERROR MESSAGE AND CONTINUE
 TMSG <
 Echo Check: > ;OUTPUT FIRST PART OF MESSAGE
 HRROI T1,BUFFER ;GET POINTER TO BUFFER
 PSOUT% ;OUTPUT TEXT JUST ENTERED

 5−24

 PROCESS STRUCTURE

 HALTF% ;STOP
 JRST START ;IN CASE PROGRAM CONTINUED

 ; PROGRAM PERFORMED BY INFERIOR PROCESS TO INPUT A LINE OF TEXT

 GETCOM: HRROI T1,BUFFER ;GET POINTER TO TEXT BUFFER
 MOVEI T2,BUFSIZ*5 ;GET COUNT OF MAX # OF CHARACTERS
 SETZM T3 ;NO RETYPE BUFFER
 RDTTY% ;READ A LINE FROM THE TERMINAL
 EJSERR ;UNEXPECTED ERROR
 SETOM FLAG ;TELL SUPERIOR TIME HAS ELAPSED
 HALTF% ;FINISHED

 ; CONSTANTS AND STORAGE

 PDLSIZ==50 ;SIZE OF THE STACK
 PDL: BLOCK PDLSIZ ;STACK
 BUFSIZ==50 ;BUFFER SIZE
 BUFFER: BLOCK BUFSIZ
 FLAG: BLOCK 1 ;INTERRUPT FLAG

 END START

 5−25
 6−1

 CHAPTER 6

 ENQUEUE/DEQUEUE FACILITY

 6.1 OVERVIEW

 Many times users are placed in situations where they must share files
 with other users. Each user wants to be guaranteed that while reading
 a file, other users are reading the same data and while writing a
 file, no users are also writing, or even reading, the same portion of
 the file.

 Consider a data file used by members of an insurance company. When
 many agents are reading individual accounts from the data file, they
 can all access the file simultaneously because no one is changing any
 portion of the data. However, when an agent desires to modify or
 replace an individual account, that portion of the file should be
 accessed exclusively by that agent. None of the other agents wants to
 access accounts that are being changed until after the changes are
 made.

 By using the ENQ/DEQ facility, cooperating users can insure that
 resources are shared correctly and that one user’s modifications do
 not interfere with another user’s. Examples of resources that can be
 controlled by this facility are devices, files, operations on files
 (for example, READ, WRITE), records, and memory pages. This facility
 can be used for dynamic resource allocation, computer networks, and
 internal monitor queueing. However, control of simultaneous updating
 of files by multiple users is its most common application.

 The ENQ/DEQ facility insures data integrity among processes only when
 the processes cooperate in their use of both the facility and the
 physical resource. Use of the facility does not prevent
 non−cooperating processes from accessing a resource without first
 enqueueing it. Nor does the facility provide protection from
 processes using it in an incorrect manner.

 A resource is defined by the processes using it and not by the system.
 Because there is competition among processes for use of a resource,
 each resource is associated with a queue. This queue is the ordering
 of the requests for the resource. When a request for the resource is

 6−1

 ENQUEUE/DEQUEUE FACILITY

 granted, a lock occurs between the process that made the request and
 the resource. For the duration of the lock, that process is the owner
 of the resource. Other processes requesting access to the resource
 are placed in the queue until the owner relinquishes the lock.
 However, there can be more than one owner of a resource at a time;
 this is called shared ownership (refer to Section 6.2). Processes
 obtain access to a specific resource by placing a request in the queue
 for the resource. This request is generated by the ENQ% monitor call.
 When finished with the resource, the process then issues the DEQ%
 monitor call. This call releases the lock by removing the request
 from the queue and makes the resource available to the next waiting
 process. This cycle continues until all requests in the queue have
 been satisfied.

 6.2 RESOURCE OWNERSHIP

 Ownership for a resource can be requested as either exclusive or
 shared. Exclusive ownership occurs when a process requests sole use
 of the resource. When a process is granted exclusive ownership, no
 other process will be allowed to use the resource until the owner
 relinquishes it. This type of ownership should be requested if the
 process plans on modifying the resource (for example, the process is
 updating a record in a data file). Shared ownership occurs when a
 process requests a resource, specifying that it will share the use of
 the resource with other processes. When a process is given shared
 ownership, other processes also specifying shared ownership are
 allowed to simultaneously use the resource. Access to a resource
 should be shared as long as any one process is not modifying the
 resource.

 Two conditions determine when a lock to a resource is given to a
 process:

 1. The position of the process’s request in the queue for the
 resource.

 2. The type of ownership specified by the process’s request.

 Because each resource has only one queue associated with it, requests
 for both exclusive and shared ownership of the resource are placed in
 the same queue. Requests are placed in the queue in the order in
 which the ENQ facility receives them, and the first request in the
 queue will be the first one serviced (except in the case of single
 requests for multiple resources; refer to Section 6.4.1). In other
 words, the ENQ facility processes requests on a first in, first out
 basis. If this first request is for shared ownership, that request
 will be serviced along with all following shared ownership requests up
 to but not including the first exclusive ownership request. If the
 first request is for exclusive ownership, no other processes are
 allowed use of the resource until the first process has released the
 lock.

 6−2

 ENQUEUE/DEQUEUE FACILITY

 Consider the following queue for a particular resource.

 !===!
 ! request 1 (shared) !
 !−−−!
 ! request 2 (shared) !
 !−−−!
 ! request 3 (exclusive) !
 !−−−!
 ! request 4 (shared) !
 !−−−!
 ! request 5 (shared) !
 !===!

 Request 1 will be serviced first because it is the first request in
 the queue. However, since this request is for shared ownership,
 request 2 can also be serviced. Request 3 cannot be serviced until
 the processes with request 1 and request 2 release the lock on the
 resource. Eventually the lock is released by the two processes, and
 the first two requests are removed from the queue. The queue now has
 the following entries:

 !===!
 ! !
 !−−−!
 ! !
 !−−−!
 ! request 3 (exclusive) !
 !−−−!
 ! request 4 (shared) !
 !−−−!
 ! request 4 (shared) !
 !===!

 Request 3 is now first in the queue and is given a lock on the
 resource. Because the request is for exclusive ownership, no other
 requests will be serviced. Once the process associated with request 3
 releases the lock, both request 4 and request 5 can be serviced
 because they both are for shared ownership.

 6.3 PREPARING FOR THE ENQ/DEQ FACILITY

 Before using the ENQ/DEQ facility, the user must obtain an ENQ quota
 from the system administrator and must obtain the name of the resource

 6−3

 ENQUEUE/DEQUEUE FACILITY

 desired, the type of protection required, and the level number
 associated with the resource.

 The ENQ quota indicates the total number of requests that can be
 outstanding for the user at any given time. Any request that would
 cause the quota to be exceeded results in an error. The user cannot
 use the ENQ facility if the quota is set to zero.

 The resource name has a meaning agreed upon by all users of the
 specific resource and serves as an identifier of the resource. The
 system makes no association between the resource name and the physical
 resource itself; it is the responsibility of the user’s process to
 make that association. The system merely uses the resource name to
 process requests and handles different resource names as requests for
 different resources.

 The resource name has two parts. In most cases, the first part is the
 JFN of the file being accessed. Before using the ENQ facility, the
 user must initialize the file using the appropriate monitor calls
 (refer to Section 3.1). The second part of the name is a modifier,
 which is either a pointer to a string or a 33−bit user code. The
 string uniquely identifies the resource to all users. The pointer can
 either be a standard byte pointer or be in the form

 −1,,ADR

 where ADR is the location of the left−justified ASCIZ text string.
 The 33−bit user code similarly identifies the resource by representing
 an item such as a record number or block number. The ENQ facility
 considers these modifiers as logical strings and does not check for
 cooperation among the users. Thus, users must be careful when
 assigning these modifiers to prevent the occurrence of two different
 modifiers referring to the same resource.

 The type of protection desired for the resource is indicated by the
 first part of the resource name. This part of the name can be one of
 four values. When the user specifies the JFN of the desired file, the
 file is subject to the standard access protection of the system. This
 is the most typical case. When the user specifies −1 instead of a
 JFN, it means that resources defined within a job are to be accessed
 only by processes of that job. Other jobs requesting resources of the
 same name are queued to a different resource. When the user specifies
 −2 instead of a JFN, it means that the resource can be accessed by any
 job on the system. A process must have bit SC%ENQ enabled in its
 capability word to specify this type of protection. If the user
 specifies −3 instead of a JFN, it means the same type of protection as
 that given when −2 is specified. However, this requires that the
 process have WHEEL or OPERATOR capability enabled. Quotas are not
 checked when −3 is given instead of a JFN.

 In addition to specifying the resource name and type of protection,
 the user also assigns a level number to each resource. The use of

 6−4

 ENQUEUE/DEQUEUE FACILITY

 level numbers prevents the occurrence of a deadly embrace situation:
 the situation where two or more processes are waiting for each to
 complete, but none of the processes can obtain a lock on the resource
 it needs for completion. This situation is represented by Figure 6−1.

 −−−−−−−−−−−−−−−−−−−−−
 | Process A is |
 | Waiting for a |
 | Resource Process |−−−−−−−−−−−−−−−−−−−−−−−−−−\
 | B Has. | |
 −−−−−−−−−−−−−−−−−−−−− |
 ^ v
 | −−−−−−−−−−−−−−−−−−−−−
 | | Process B is |
 | | Waiting for a |
 | | Resource Process |
 | | C Has. |
 | −−−−−−−−−−−−−−−−−−−−−
 | |
 | −−−−−−−−−−−−−−−−−−−−− |
 | | Process C is | |
 | | Waiting for a | |
 \−−−−−−−−−| Resource Process |<−−−−−−−/
 | A Has. |
 −−−−−−−−−−−−−−−−−−−−−

 Figure 6−1: Deadly Embrace Situation

 Each process is in the queue waiting for the resource it needs, but no
 request is being serviced because the desired resources are
 unavailable.

 The use of level numbers forces cooperating processes to order their
 use of resources by requiring that processes request resources in an
 ascending numerical order and that all processes assign the same level
 number to a specific resource. This means that the order in which
 resources are requested is the same for all processes and therefore,
 requests for the first resource will always precede requests for the
 second one.

 If both of the above requirements are not met, the process requesting
 the resource receives an error, unless the appropriate flag bit is set
 (refer to Section 6.4.1.2), and the request is not placed in the
 queue. Thus, instead of waiting for a resource it will never get, the
 process is informed immediately that the resource is not available.

 6−5

 ENQUEUE/DEQUEUE FACILITY

 6.4 USING THE ENQ/DEQ FACILITY

 There are three monitor calls available for the ENQ/DEQ facility:
 ENQ%, to request use of a resource; DEQ%, to release a lock on a
 resource; and ENQC%, to obtain information about the queues and to
 specify access to these queues.

 6.4.1 Requesting Use of a Resource

 The user issues the ENQ% monitor call to place a request in the queue
 associated with the desired resource. This call is used to specify
 the resource name, level number, and type of protection required.

 A single ENQ% monitor call can be used to request any number of
 resources. In fact, when desiring multiple resources, the user should
 request all of them in one call. This method of requesting resources
 guarantees that the user gets either none or all of the resources
 requested because the ENQ/DEQ facility never allocates only some of
 the resources specified in one call. Because all resources in a
 single call must be available at the same time, the first user
 requesting a resource (that is, the first user in the queue for the
 resource) may not be the first user obtaining it if other resources in
 the request are currently not available.

 A single call for multiple resources is not functionally the same as a
 series of single calls of those resources. In a single call, the
 entire request is rejected if an error is returned for one of the
 resources specified. In a series of single calls, each request that
 did not return an error will be queued.

 The ENQ% monitor call accepts two words of arguments in AC1 and AC2.
 The first word contains the code of the desired function, and the
 second contains the address of the argument block. Thus,

 AC1: function code

 AC2: address of argument block

 6.4.1.1 ENQ% Functions − The functions that can be requested in the
 ENQ% call are described in Table 6−1.

 6−6

 ENQUEUE/DEQUEUE FACILITY

 Table 6−1: ENQ% Functions

 __

 Code Symbol Meaning
 __

 0 .ENQBL Queue the requests and block the
 process until all requested locks are
 acquired. This function returns an
 error code only if the ENQ% call is
 not correctly specified.

 1 .ENQAA Queue the requests and acquire the
 locks only if all requested resources
 are immediately available. If the
 resources are available, all will be
 allocated to the process. If any one
 of the resources is not available, no
 requests are queued, no locks are
 acquired, and an error code is
 returned in AC1.

 2 .ENQSI Queue the requests for all specified
 resources. If all resources are
 available, this function is identical
 to the .ENQBL function. If all
 resources are not immediately
 available, the requests are queued,
 and a software interrupt is generated
 when all requested resources have been
 given to the process.

 3 .ENQMA Change the ownership access of a
 previously−queued request (refer to
 bit EN%SHR below). The access for
 each lock in this request is compared
 with the access for each lock in the
 request already queued. No action is
 taken if the two accesses are the
 same. If the access in this request
 is shared and the access in the
 previous request is exclusive, the
 ownership access is changed to shared
 access. Otherwise, an error is
 returned if:

 1. There are processes which are
 locking, or waiting on the same
 lock, and the process tries to
 change the ownership access from
 shared to exclusive. If this is

 6−7

 ENQUEUE/DEQUEUE FACILITY

 the case, the process should issue
 a DEQ% monitor call for the shared
 request and then issue another
 ENQ% monitor call for exclusive
 ownership.

 2. Any one of the specified locks
 does not have a pending request.

 3. Any one of the specified locks is
 a pooled resource (refer to
 Section 6.4.1.2).

 Each lock specified is checked, and
 the access is changed for all locks
 that were correctly given. On
 receiving an error, the process should
 issue the ENQC% monitor call to
 determine the current state of each
 lock (refer to Section 6.4.3).

 4 .ENECL Set cluster−wide ENQ/DEQ functionality
 for all ENQ/DEQ/ENQC JSYSes performed
 by this process. The contents of AC2
 are ignored as this function does not
 require an argument block.
 __

 6.4.1.2 ENQ% Argument Block − The format of the argument block is
 described in Table 6−2.

 Table 6−2: ENQ% Argument Block

 __

 Word Symbol Meaning
 __

 0 .ENQLN Number of locks being requested in the left
 half, and length of argument block
 (including this word) in the right half.

 1 .ENQID Number of software interrupt channel in the
 left half, and request ID in the right
 half.

 2 .ENQLV Flags and level number in the left half,
 and JFN, −1, −2 or −3 (refer to Section
 6.3) in the right half.

 6−8

 ENQUEUE/DEQUEUE FACILITY

 3 .ENQUC Pointer to string or 5B2+33−bit user code
 (refer to Section 6.3).

 4 .ENQRS Number of resources in the pool in the left
 half, and number of resources requested in
 the right half.

 5 .ENQMS Address of a resource mask block.
 __

 Words .ENQLV, .ENQUC, .ENQRS, and .ENQMS (words 2 through 5) are
 repeated for each lock being requested. These four words are called
 the lock specification.

 Software Interrupts

 The software interrupt system is used in conjunction with the .ENQSI
 function (refer to Section 6.4.1.1). If all locks are not available
 when the user requests them, the .ENQSI function causes a software
 interrupt to be generated when the locks become available. The user
 specifies the software channel on which to receive the interrupt by
 placing the channel number in the left half of word .ENQID in the
 argument block.

 When the user is waiting for more than one lock to become available,
 he will receive an interrupt when the last lock is available. If he
 desires to be informed as each lock becomes available, he can assign
 the locks to separate channels by issuing multiple ENQ% calls. The
 availability of each lock will then be indicated by the occurrence of
 an interrupt on each channel.

 When the user requests the .ENQSI function, he must initialize the
 interrupt system first or else an interrupt will not be generated when
 the locks become available (refer to Chapter 4).

 Request ID

 The 18−bit request ID is currently not used by the system, but is
 stored for use by the process. Thus, the process can supply an ID to
 use as identification for the request. This ID is useful on the
 .DEQID function of the DEQ% monitor call (refer to Section 6.4.2.1).

 Flags and Level Numbers

 Table 6−3 describes the flags that can be used in the left half of the
 first word of each lock specification (.ENQLV).

 6−9

 ENQUEUE/DEQUEUE FACILITY

 Table 6−3: Lock Specification Flags

 __

 Bit Symbol Meaning
 __

 0 EN%SHR Ownership for this resource is to be
 shared. If this bit is not on,
 ownership for this resource is to be
 exclusive.

 1 EN%BLN Ignore the level number associated
 with this resource. If this bit is
 set, sequencing errors in level
 numbers are not considered fatal, and
 execution of the call continues.

 On successful completion of the call,
 AC1 contains either an error code if a
 sequencing error occurred, or zero if
 a sequencing error did not occur.

 WARNING

 A deadly embrace situation may
 occur when level numbers are
 not used. Use of these
 numbers guarantees that such a
 situation cannot arise; for
 this reason bit EN%BLN should
 not be set.

 2 EN%NST Allow ownership of this lock to be
 nested.

 3 EN%LTL Allow a long−term lock on this
 resource.

 4−8 Reserved for Digital.

 9−17 EN%LVL Level number associated with this
 resource. This number is specified by
 the user and must be agreed upon by
 all users of the resource. In order
 to eliminate a deadly embrace
 situation, users must request
 resources in numerically increasing
 order.
 __

 6−10

 ENQUEUE/DEQUEUE FACILITY

 The request is not queued, and an error is given, if EN%BLN is not set
 and

 1. The user requests a resource with a level number less than or
 equal to the highest numbered resource he has requested so
 far.

 2. The level number of this request does not match the level
 number supplied in previous requests for this resource.

 Pooled Resources

 Word .ENQRS of each lock specification is used to allocate multiple
 copies from a pool of identical resources. Bit EN%SHR, indicating
 shared ownership, is meaningless for pooled resources because each
 resource in the pool can be owned by only one process at a time. A
 process can own one or more resources in the pool; however, it cannot
 own more than there are in the pool or more than there are unowned in
 the pool.

 The left half of word .ENQRS contains the total number of resources
 existing in the pool. This number is previously agreed upon by all
 users of the pooled resource. The first user who requests the
 resource sets this number, and all subsequent requests must specify
 the same number or an error is given.

 The right half of word .ENQRS contains the number of resources being
 requested by this process. This number must be greater than zero if a
 pool of resources exists and cannot be greater than the number in the
 left half. This means that if a pool of resources exists, the user
 must request at least one resource, but cannot request more than are
 in the pool.

 Once the number of pooled resources is determined, the resources are
 allocated until the pool is depleted or until a request specifies more
 resources than are currently available. In the latter case, the user
 making the request is not given any resources until his entire request
 can be satisfied. Subsequent requests from other users are not
 granted until this request is satisfied even though there may be
 enough resources to satisfy these subsequent requests. As users
 release their resources, the resources are returned to the pool. When
 all resources have been returned, they cease to exist, and the next
 request completely redefines the number of resources in the new pool.

 The system assumes that the resource is in a pool if the left half of
 word .ENQRS of the lock specification is nonzero. Thus the user
 should set the left half to zero if only one resource of a specific
 type exists. If this is the case, then the right half of this word is
 a number defining the group of users who can simultaneously share the
 resource. This means that when the resource is allocated to a user
 for shared ownership, only other users in the same group will be
 allowed access to the resource. The use of sharer groups restricts

 6−11

 ENQUEUE/DEQUEUE FACILITY

 access to a resource to a set of processes smaller than the set for
 shared ownership (which is sharer group 0) but larger than the set for
 exclusive ownership. (Refer to Section 6.5 for more information on
 sharer groups).

 6.4.2 Releasing a Resource

 The user issues the DEQ% monitor call to remove a request from the
 queue associated with a resource. The request is removed whether or
 not the user actually owns a lock on the resource or is only waiting
 in the queue for the resource.

 The DEQ% monitor call can be used to remove any number of requests
 from the queues. If one of the requests cannot be removed, the
 dequeueing procedure continues until all lock specifications have been
 processed. An error code is then returned for the last request found
 that could not be dequeued. The process can then execute the ENQC%
 call (refer to Section 6.4.3) to determine the status of each lock.
 Thus, unlike the operation of the ENQ% call, the DEQ% call will
 dequeue as many resources as it can, even if an error is returned for
 one of the lock specifications in the argument block. However, when a
 user attempts to dequeue more pooled resources than he originally
 allocated, an error code is returned and none of the resources are
 dequeued.

 The DEQ% monitor call accepts two words of arguments in AC1 and AC2.
 The first word contains the code for the desired function, and the
 second word contains the address of the argument block. Thus,

 AC1: function code

 AC2: address of argument block

 6−12

 ENQUEUE/DEQUEUE FACILITY

 6.4.2.1 DEQ% Functions − The DEQ% functions are described in Table
 6−4.

 Table 6−4: DEQ% Functions

 __

 Code Symbol Meaning
 __

 0 .DEQDR Remove the specified requests from the queues.
 This function is the only one that requires an
 argument block.

 1 .DEQDA Remove all requests for this process from the
 queues. This action is taken on a RESET
 monitor call. An error code is returned if
 this process has not requested any resources
 (that is, if this process has not issued an
 ENQ%).

 2 .DEQID Remove all requests that correspond to the
 specified request identifier. When this
 function is specified, the user must place the
 18−bit request ID in AC2 on the DEQ% call.
 This function allows the user to release a
 class of locks in one call without itemizing
 each lock in an argument block. The function
 should be used when dequeueing in one call the
 same locks that were enqueued in one call.
 For example, with this function the user can
 specify the ID to be the same as the JFN used
 in the ENQ% call and thus remove all locks to
 that file at once.
 __

 6−13

 ENQUEUE/DEQUEUE FACILITY

 6.4.2.2 DEQ% Argument Block − The format of the argument block for
 function .DEQDR is described in Table 6−5.

 Table 6−5: DEQ% Argument Block

 __

 Word Symbol Meaning
 __

 0 .ENQLN Number of locks being requested in the left
 half, and length of argument block
 (including this word) in the right half.

 1 .ENQID Number of software interrupt channel in the
 left half, and request ID in the right
 half.

 2 .ENQLV Flags and level number in the left half,
 and JFN, −1, −2 or −3 (refer to Section
 6.3) in the right half.

 3 .ENQUC Pointer to string or 5B2+33−bit user code
 (refer to Section 6.3).

 4 .ENQRS Number of resources in the pool in the left
 half, and number of resources requested in
 the right half.

 5 .ENQMS Address of a resource mask block.
 __

 Words .ENQLV, .ENQUC, .ENQRS, and .ENQMS (words 2 through 5) are
 repeated for each request being dequeued. These four words are called
 the lock specification.

 6.4.3 Obtaining Information About Resources

 The user issues the ENQC% monitor call to obtain information about the
 current status of the given resources. This call can also be used by
 privileged users to perform various utility functions on the queue
 structure. The format of the ENQC% call is different for these two
 uses. (Refer to the TOPS−20 Monitor Calls Reference Manual for the
 explanation of the privileged use of the ENQC% call.)

 The ENQC% monitor call accepts three words of arguments in AC1 through
 AC3:

 6−14

 ENQUEUE/DEQUEUE FACILITY

 AC1: function code (.ENQCS)

 AC2: address of argument block

 AC3: address of area to receive status information

 The format of the argument block is identical to the format of the
 ENQ% and DEQ% argument blocks. The area in which the status is to be
 returned should be three times as long as the number of locks
 specified in the argument block.

 On successful execution of the ENQC% call, the current status of each
 lock specified is returned as a three−word entry. This three−word
 entry has the following format.

 !===!
 ! Flag bits indicating status of lock !
 !−−−!
 ! 36−bit time stamp !
 !−−−!
 ! Reserved ! Request ID !
 !===!

 Table 6−6 describes the flag bits that can be used in a ENQC% call.

 6−15

 ENQUEUE/DEQUEUE FACILITY

 Table 6−6: ENQC% Flag Bits

 __

 Bit Symbol Meaning
 __

 0 EN%QCE An error has occurred in the corresponding lock
 request. Bits 18−35 contain the appropriate
 error code.

 1 EN%QCO The process issuing the ENQC% call is the owner
 of this lock.

 2 EN%QCQ The process issuing the ENQC% call is in the
 queue waiting for this resource. This bit will
 be on when EN%QCO is on because a request
 remains in the queue until a DEQ% call is given.

 3 EN%QCX The lock has been allocated for exclusive
 ownership. When this bit is off, there is no
 way of determining the number of sharers of the
 resource.

 4 EN%QCB The process issuing the ENQC% call is in the
 queue waiting for exclusive ownership to the
 resource. This bit will be off if EN%QCQ is
 off.

 5 EN%QCC This is a cluster−wide lock/request. This bit
 exists in both a lock−block and a q−block.

 6 EN%QCN No future vote is required for this lock. This
 bit exists in a lock−block.

 7 EN%QCS This lock requires a scheduling pass.

 8 Reserved for Digital

 9−17 EN%LVL The level number of the resource.

 18−35 EN%JOB The number of the job that owns the lock. This
 value may be a job number on another system
 within the cluster. For locks with shared
 ownership, this value will be the job number of
 one of the owners. However, this value will be
 the current job’s number if the current job is
 one of the owners. If this lock is not owned,
 the value is −1. If EN%QCE is on, this field
 contains the appropriate error code.
 __

 6−16

 ENQUEUE/DEQUEUE FACILITY

 The 36−bit time stamp indicates the last time a process locked the
 resource. The time is in the universal date−time standard. If no one
 currently has a lock on the resource, this word is zero.

 The request ID returned in the right half of the third word is either
 the request ID of the current process if that process is in the queue
 or the request ID of the owner of the lock.

 6.5 SHARER GROUPS

 Processes can specify the sharing of resources by using sharer group
 numbers (refer to Section 6.4.1.2). The use of sharer groups
 restricts the ownership for a resource to a set of processes smaller
 than the set for shared ownership but larger than the set for
 exclusive ownership.

 Sharer group number 0 is used to indicate the group of all cooperating
 processes of the resource. This group number is assumed when no group
 is specified in the ENQ% call. To restrict use of the resource, a
 group number other than 0 must be explicitly specified in the call.

 Consider the following example. The resource is the WRITE operation
 on a file. There are four types of uses of this resource as shown in
 Figure 6−2.

 6−17

 ENQUEUE/DEQUEUE FACILITY

 −−−
 |\ | | |
 | \ Process’| | |
 | \ Own Use | | |
 | \ of the | | |
 | \Resource| | Not Allowed |
 | \ | Write | to Write |
 | \ | | |
 | \ | | |
 | Other \ | | |
 | Process’\ | | |
 | Use of \ | | |
 | Resource \ | | |
 | \| | |
 |−−−−−−−−−−−−−|−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−|
 | | 1 | 2 |
 | Write | | |
 | | Shared, | No Need to Use |
 | | Group 0 | ENQ/DEQ |
 |−−−−−−−−−−−−−|−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−|
 | | 3 | 4 |
 | Not Allowed | | |
 | to Write | Exclusive | Shared, |
 | | | Group 1 |
 −−−

 Figure 6−2: Use of Sharer Groups

 In block 1 of the figure, the process owning the lock wishes to allow
 all cooperating processes to also lock the resource (that is, to
 perform the WRITE operation). Therefore, in the ENQ% call, the
 process specifies the resource can be locked by all cooperating
 processes. In block 2 of the figure, the process does not plan on
 locking the resource and does not care if other processes lock it.
 Thus, there is no need for the process to use the ENQ/DEQ facility.
 In block 3 of the figure, the process desires to lock the resource
 exclusively and does not want other processes to lock it. Thus, the
 process obtains exclusive ownership for the resource. In block 4 of
 the figure, the process does not want to lock the resource immediately
 but also does not want other processes to lock it because it soon
 plans to request a lock on the resource. If the process were the only
 one requesting this type of use, exclusive ownership would be
 sufficient, because the resource would be unavailable to others as
 long as the process owned the lock. However, if other processes
 desire this same type of use, exclusive ownership is not sufficient,
 because once one process releases the lock, another process with a
 different type of use could obtain its own lock. Thus, in this
 example, sharer group 1 is defined to include all processes with the
 same type of use (that is, all processes who do not want to lock the
 resource immediately but also do not want other processes to lock it).

 6−18

 ENQUEUE/DEQUEUE FACILITY

 This elimates the problem of another user obtaining the resource for a
 different type of use.

 Sharer group 0 should be sufficient for most uses of the ENQ/DEQ
 facility. Additional groups should only be needed in those situations
 where a subset of the cooperating processes must have a specific use
 of a resource, as in the above example.

 6.6 AVOIDING DEADLY EMBRACES

 Processes can interact in many undesirable ways if improper
 communication occurs among the processes or if resources are
 incorrectly shared. An example of one undesirable situation is the
 occurrence of a deadly embrace: when two processes are waiting for
 each other to complete but neither one can gain access to the resource
 it needs for completion. This situation can be avoided when processes
 consider the following guidelines.

 1. Processes should request resources at the time they need
 them. If possible, processes should request resources one at
 a time and release each resource before requesting the next
 one.

 2. Processes should request shared ownership whenever possible.
 However, the process should not request shared ownership if
 it plans on modifying the resource.

 3. When a process needs more than one resource, it should
 request these resources in one ENQ% call instead of multiple
 calls for each resource. The process should also release the
 entire set of resources at once with a single DEQ% call.

 4. When the use of one resource depends on the use of a second
 one, the process should define the two resources as one in
 the ENQ% and DEQ% calls. However, there is no protection of
 the resources if they are also requested separately.

 5. Occasionally processes use a set of resources and require a
 lock on the second resource while retaining the lock on the
 first. In this case, the order in which the locks are
 obtained should be the same for all users of the set of
 resources. The same ordering of locks is accomplished by the
 processes assigning level numbers to each resource. The
 requirements that processes request resources in ascending
 numerical order and that all processes use the same level
 number for a specific resource ensure that a deadly embrace
 situation will not occur.

 6−19
 7−1

 CHAPTER 7

 INTER−PROCESS COMMUNICATION FACILITY

 7.1 OVERVIEW

 The Inter−Process Communication Facility (IPCF) allows communication
 among jobs and system processes. This communication occurs when
 processes send and receive information in the form of packets. Each
 sender and receiver has a Process ID (PID) assigned to it for
 identification purposes.

 When the sender sends a packet of information to another process, the
 packet is placed into the receiver’s input queue. The packet remains
 in the queue until the receiver checks the queue and retrieves the
 packet. Instead of periodically checking its input queue, the
 receiver can enable the software interrupt system (refer to Chapter 4)
 to generate an interrupt when a packet is placed in its input queue.

 The <SYSTEM>INFO process is the information center for the
 Inter−Process Communication Facility. This process performs system
 functions related to PIDs and names, and any process can request these
 functions by sending <SYSTEM>INFO a packet.

 7.2 QUOTAS

 Before using IPCF, the user must acquire the ability to use IPCF
 privileges from the system administrator: a send packet quota and a
 receive packet quota. These quotas designate, on a per process basis,
 the number of sends and receives that can be outstanding at any one
 time. For example, if the process has a send quota of two and it has
 sent two packets, it cannot send any more until at least one packet
 has been retrieved by its receiver. A send packet quota of two and a
 receive packet quota of five are assumed as the standard quotas. If
 these quotas are zero, the process cannot use IPCF.

 7−1

 INTER−PROCESS COMMUNICATION FACILITY

 7.3 PACKETS

 Information is transferred in the form of packets. Each packet is
 divided into two portions: a packet descriptor block of four to six
 words and a packet data block the length of the message. The format
 of the packet is shown in Figure 7−1.

 Packet Descriptor Block

 !===!
 .IPCFL ! flags !
 !−−−!
 .IPCFS ! PID of sender !
 !−−−!
 .IPCFR ! PID of receiver !
 !−−−!
 .IPCFP ! length of message ! address of message !
 ! n ! ADR !
 !−−−!
 .IPCFD ! sender’s connected ! sender’s logged in !
 ! directory ! directory !
 !−−−!
 .IPCFC ! enabled capabilities of sender !
 !−−−!
 .IPCSD ! connected directory of sender !
 !−−−!
 .IPCAS ! account string of sender !
 !−−−!
 .IPCLL ! logical location of sender !
 !===!

 Packet Data Block

 !===!
 ADR ! message word 1 !
 !===!
 .
 .
 .
 !===!
 ! message word n !
 !===!

 Figure 7−1: IPCF Packet

 7−2

 INTER−PROCESS COMMUNICATION FACILITY

 7.3.1 Flags

 There are two types of flags that can be set in word .IPCFL of the
 packet descriptor block. The flags in the left half of the word are
 instructions to IPCF for packet communication, and the flags in the
 right half are descriptions of the data message. The flags in the
 right half are returned as part of the associated variable (refer to
 Section 7.4.2). The packet descriptor block flags are described in
 Table 7−1.

 Table 7−1: Packet Descriptor Block Flags

 __

 Bit Symbol Meaning
 __

 0 IP%CFB Do not block the process if there are no
 messages in the queue. If this bit is on, the
 process receives an error if there are no
 messages.

 1 IP%CFS Use the PID obtained from the address in word
 .IPCFS of the packet descriptor block as the
 sender’s PID.

 2 IP%CFR Use the PID obtained from the address in word
 .IPCFR of the packet descriptor block as the
 receiver’s PID.

 3 IP%CFO Allow the process one send above the send quota.
 (The standard send quota is two.)

 4 IP%TTL Truncate the message if it is longer than the
 area reserved for it in the packet data block.
 If this bit is not on, the process receives an
 error if the message is too long.

 5 IP%CPD Create a PID to use as the sender’s PID. The
 PID created is returned in word .IPCFS of the
 packet descriptor block.

 6 IP%JWP Make the PID created be permanent until the job
 logs out (if both bits IP%CPD and IP%JWP are
 on). Make the PID created be temporary until
 the process executes a RESET% monitor call (if
 bit IP%CPD is on and bit IP%JWP is not on). If
 bit IP%CPD is not on, bit IP%JWP is ignored.

 7 IP%NOA Do not allow other processes to use the PID
 created when bit IP%CPD is on. If bit IP%CPD is
 not on, bit IP%NOA is ignored.

 7−3

 INTER−PROCESS COMMUNICATION FACILITY

 8−17 Reserved for Digital.

 18 IP%CFP The packet is privileged. This bit can be set
 only by a process with WHEEL capability enabled.
 Refer to the TOPS−20 Monitor Calls Reference
 Manual for a description of this bit.

 19 IP%CFV The packet is a page of 512 (decimal) words of
 data.

 20 IP%CFZ A zero−length message was sent.

 21 Reserved for Digital.

 22 IP%EPN Page number in word .IPCFP of the packet
 descriptor block is 18 bits long

 23 Reserved for Digital.

 24−29 IP%CFE Field for error code returned from <SYSTEM>
 INFO.

 Code Symbol Meaning

 15 .IPCPI insufficient privileges

 16 .IPCUF invalid function

 66 .IPCKM PID has been deleted

 67 .IPCSN <SYSTEM>INFO needs name

 72 .IPCFF <SYSTEM>INFO free space exhausted

 74 .IPCBP PID has no name or is invalid

 75 .IPCDN duplicate name has been specified

 76 .IPCNN unknown name has been specified

 77 .IPCEN invalid name has been specified

 30−32 IP%CFC System and sender code. This code can be set
 only by a process with WHEEL capability enabled,
 but the monitor will return the code so a
 nonprivileged process can examine it.

 Code Symbol Meaning

 1 .IPCCC Sent by <SYSTEM>IPCF

 2 .IPCCF Sent by system−wide <SYSTEM>INFO

 7−4

 INTER−PROCESS COMMUNICATION FACILITY

 3 .IPCCP Sent by receiver’s <SYSTEM>INFO

 4 .IPCCG Sent by monitor for QUEUE% JSYS

 33−35 IP%CFM Field for special messages. This code can be
 set only by a process with WHEEL capability
 enabled, but the monitor will return the code so
 that a nonprivileged process can examine it.

 Code Symbol Meaning

 1 .IPCFN Process’ input queue contains a
 packet that could not be delivered
 to intended PID.
 __

 7.3.2 PIDs

 Any process that wants to send or receive a packet must obtain a PID.
 The process can obtain a PID by sending a packet to <SYSTEM>INFO
 requesting that a PID be assigned. The process must also include a
 symbolic name that is to be associated with the assigned PID.

 The symbolic name can be a maximum of 29 characters and can contain
 any characters as long as it is terminated by a zero word. There
 should be mutual understanding among processes as to the symbolic
 names used in order to initiate communication. Once the name is
 defined, any process referring to that name must specify it exactly
 character for character.

 Before a process can send a packet, it must know the receiver’s
 symbolic name or PID. If only the receiver’s name is known, the
 sender must ask <SYSTEM>INFO for the PID associated with the name,
 since all communication is via PIDs.

 The association between a PID and a name is broken:

 1. On a RESET% monitor call.

 2. When the process is killed or the job logs off the system.

 3. When a request to disassociate the PID from the name is made
 to <SYSTEM>INFO.

 <SYSTEM>INFO will not allow a name already associated with a PID to be
 assigned again unless the owner of the name makes the request. Nor
 will <SYSTEM>INFO assign a PID once it has been used. This action
 protects against messages being sent to the wrong receiver by
 accident.

 7−5

 INTER−PROCESS COMMUNICATION FACILITY

 The PIDs of the sender and the receiver are indicated by words .IPCFS
 and .IPCFR, respectively, of the packet descriptor block.

 7.3.3 Length and Address of Packet Data Block

 Word .IPCFP of the packet descriptor block contains the length and the
 beginning address of the message. The length specified is one of two
 types, depending on the type of message (refer to Section 7.3.5). If
 the message is a short−form message, the length is the actual word
 length of the message. If the message is a long−form message, the
 length is 1000 (octal) words, that is, one page.

 The address specified is either an address or a page number, depending
 on the type of message (refer to Section 7.3.5). When a message is
 sent, it is taken from this address. When a message is received, it
 is placed in this address.

 7.3.4 Directories and Capabilities

 Words .IPCFD and .IPCFC describe the sender at the time the message
 was sent and are used by the receiver to validate messages sent to it.
 These two words are not used when a message is sent, and if the sender
 of the packet supplies them, they are ignored. However, when a
 message is received, if the receiver of the packet has reserved space
 for these words in the packet descriptor block, the system supplies
 the appropriate values of the sender of the packet. The receiver of
 the packet does not have to reserve these words if it is not
 interested in knowing the sender’s directories and capabilities.

 7.3.5 Packet Data Block

 The packet data block contains the message being sent or received.
 The message can be either a short−form message or a long−form message.

 A short−form message is one to n words long, where n is defined by the
 installation. (Usually, n is assumed to be 10 words.) When a
 short−form message is sent or received, word .IPCFP of the packet
 descriptor block contains the actual word length of the message in the
 left half and the address of the first word of the message in the
 right half. A process always uses the short form when sending
 messages to <SYSTEM>INFO.

 A long−form message is one page in length (1000 octal words). When a
 long−form message is sent or received, word .IPCFP of the packet
 descriptor block contains 1000 (octal) in the left half and the page
 number of the message in the right half. To send and receive a

 7−6

 INTER−PROCESS COMMUNICATION FACILITY

 long−form message, both the sender and receiver must have bit IP%CFV
 (bit 19) set in the first word of the packet descriptor block, or else
 an error code is returned.

 7.4 SENDING AND RECEIVING MESSAGES

 To send a message, the sending process must set up the first four
 words of the packet descriptor block. The process then executes the
 MSEND% monitor call. After execution of this call, the packet is sent
 to the intended receiver’s input queue.

 To receive a message, the receiving process must also set up the first
 four words of the packet descriptor block. The last two words for the
 directories and capabilities of the sender can be supplied, and the
 system will fill in the appropriate values. The process then executes
 the MRECV% monitor call. After execution of this call, a packet is
 retrieved from the receiver’s input queue. The input queue is emptied
 on a first−message−in, first−message−out basis.

 7.4.1 Sending a Packet

 The MSEND% monitor call is used to send a message via IPCF. Messages
 are in the form of packets of information and can be sent to a
 specified PID or to the system process <SYSTEM>INFO. Refer to Section
 7.5 for information on sending messages to <SYSTEM>INFO.

 The MSEND% call accepts two words of arguments. The length of the
 packet descriptor block is given in AC1, and the beginning address of
 the packet descriptor block is given in AC2. Thus,

 AC1: length of packet descriptor block. The length cannot be
 less than 4.

 AC2: address of packet descriptor block

 The packet descriptor block consists of the following four words:

 .IPCFL Flags
 .IPCFS Sender’s PID
 .IPCFR Receiver’s PID
 .IPCFP Pointer to packet data block containing the
 message being sent.

 Refer to Section 7.3 for the details on the packet descriptor and
 packet data blocks.

 7−7

 INTER−PROCESS COMMUNICATION FACILITY

 The flags that are meaningful when sending a packet are described in
 Table 7−2. Refer to Table 7−1 for the complete list of flag bits.

 Table 7−2: Flags Meaningful on a MSEND% Call

 __

 Bit Symbol Meaning
 __

 0 IP%CFB Do not block process if no messages in queue;
 if set, error return if no messages.

 1 IP%CFS The sender’s PID is given in word .IPCFS of
 the packet descriptor block.

 2 IP%CFR The receiver’s PID is given in word .IPCFR of
 the packet descriptor block.

 3 IP%CFO Allow the sender to send one message above its
 send quota.

 4 IP%TTL Truncate message if larger than space
 reserved.

 5 IP%CPD Create a PID for the sender and return it in
 word .IPCFS of the packet descriptor block.
 The PID created is to be permanent and useable
 by other processes according to the setting of
 bits IP%JWP and IP%NOA.

 6 IP%JWP The PID created is to be job wide and
 permanent until the job logs out. If this bit
 is not on, the PID created is to be temporary
 until the process executes the RESET monitor
 call.

 7 IP%NOA The PID created is not to be used by other
 processes.

 18 IP%CFP The message being sent is privileged (refer to
 the TOPS−20 Monitor Calls Reference Manual).

 19 IP%CFV The message being sent is a long−form message
 (that is, a page). The page the message is
 being sent to cannot be a shared page; it must
 be a private page.

 22 IP%EPN Page number in word .IPCFP of the packet
 descriptor block is 18 bits long.
 __

 7−8

 INTER−PROCESS COMMUNICATION FACILITY

 When bit IP%CFS is on in the flag word, the sender’s PID is taken from
 word .IPCFS of the packet descriptor block. This word is zero if bit
 IP%CPD is on in the flag word, indicating that a PID is to be created
 for the sender. In this case, the PID created is returned in word
 .IPCFS.

 When bit IP%CFR is on in the flag word, the receiver’s PID is taken
 from word .IPCFR of the packet descriptor block. If this word is 0,
 then the receiver of the message is <SYSTEM>INFO. Refer to Section
 7.5 for information on sending messages to <SYSTEM>INFO.

 On successful execution of the MSEND% monitor call, the packet is sent
 to the receiver’s input queue. Word .IPCFS of the packet descriptor
 block is updated with the sender’s PID. Execution of the user’s
 program continues at the second location after the MSEND% call.
 (MSEND%)

 If execution of the MSEND% call is not successful, the message is not
 sent, and an error code is returned in AC1. The execution of the
 user’s program continues at the instruction following the MSEND% call.

 7.4.2 Receiving a Packet

 The MRECV% monitor call is used to retrieve a message from the
 process’ input queue. Before a process can retrieve a message, it
 must know if the message is a long−form message and also must set up a
 packet descriptor block.

 The MRECV% monitor call accepts two words of arguments. The length of
 the packet descriptor block is given in AC1, and the beginning address
 of the packet descriptor block is given in AC2. Thus,

 AC1: length of packet descriptor block. The length cannot be
 less than 4.

 AC2: address of packet descriptor block

 The packet descriptor block can consist of the following nine words.
 The last five words are optional, and if supplied by the receiver, the
 values of the sender will be filled in by the system.

 .IPCFL Flags
 .IPCFS Sender’s PID
 .IPCFR Receiver’s PID
 .IPCFP Pointer to packet data block where the message is
 to be placed.
 .IPCFD Connected and logged−in directories of the sender.
 .IPCFC Enabled capabilities of the sender.
 .IPCSD Number of sender’s connected directory.

 7−9

 INTER−PROCESS COMMUNICATION FACILITY

 .IPCAS Account string of sender.
 .IPCLL Byte pointer for destination of sender’s node.

 Refer to Section 7.3 for the details on the packet descriptor and
 packet data blocks.

 The flags that are meaningful when receiving a packet are described in
 Table 7−3. Refer to Table 7−1 for the complete list of flag bits.

 Table 7−3: Flags Meaningful on a MRECV% Call

 __

 Bit Symbol Meaning
 __

 0 IP%CFB If there are no packets in the receiver’s
 input queue, do not block the process and
 return an error code if the queue is empty.
 If this bit is not on, the process waits until
 a packet arrives, if the queue is empty.

 1 IP%CFS Use PID referenced in word .IPCFS as sender’s
 PID.

 2 IP%CFR The receiver’s PID is given in word .IPCFR of
 the packet descriptor block.

 3 IP%CFO Allow one send request above quota. (Default
 send quota is 2.)

 4 IP%TTL Truncate the message if it is larger than the
 space reserved for it in the packet data
 block. If this bit is not on and the message
 is too large, an error code is returned and no
 message is received.

 5 IP%CPD Create PID for sender and return in word
 .IPCFS.

 6 IP%JWP Make created PID job wide (ignored unless
 IP%CPD set).

 7 IP%NOA Do not allow other processes to use created
 PID (ignored unless IP%CPD set).

 18 IP%CFP Packet is privileged (requires IPCF capability
 enabled).

 7−10

 INTER−PROCESS COMMUNICATION FACILITY

 19 IP%CFV The message is expected to be a long−form
 message (that is, a page). The page the
 message is being stored into cannot be a
 shared page; it must be a private page.

 22 IP%EPN Page number in word .IPCFP of the packet
 descriptor block is 18 bits long.
 __

 The information in word .IPCFS is not supplied by the receiver when
 the MRECV% call is executed. The system fills in the PID of the
 sender of the packet when the packet is retrieved.

 Word .IPCFR is supplied by the receiver. If bit IP%CFR is on in the
 flag word, then the PID receiving the packet is taken from word .IPCFR
 of the packet descriptor block. If bit IP%CFR is not on in the flag
 word, then word .IPCFR contains either −1, to receive a packet for any
 PID belonging to this process, or −2, to receive a packet for any PID
 belonging to this job. When −1 or −2 is given, packets are not
 received in any particular order except that packets from a specific
 PID are received in the order in which they were sent. Any other
 values in this word cause an error code to be returned.

 The information in words .IPCFD and .IPCFC is also not supplied by the
 receiver. If these two words have been specified by the receiver, the
 system fills in the information when the packet is retrieved. Word
 .IPCFD contains the sender’s connected directory in the left half and
 the sender’s logged−in directory in the right half. Word .IPCFC
 contains the enabled capabilities of the sender. These words describe
 the sender at the time the message was sent.

 On successful execution of the MRECV% monitor call, the packet is
 retrieved and placed into the packet data block as indicated by word
 .IPCFP of the packet descriptor block. AC1 contains the length of the
 next packet in the queue in the left half and flags from the next
 packet in the right half (see below). This word returned in AC1 is
 called the associated variable of the next packet in the queue. If
 there is not another packet in the queue, AC1 contains zero.
 Execution of the user’s program continues at the second instruction
 after the MRECV% call.

 The flags returned in the right half of AC1 on successful execution of
 the MRECV% monitor call are described in Table 7−4.

 7−11

 INTER−PROCESS COMMUNICATION FACILITY

 Table 7−4: MRECV% Return Bits

 __

 Bit Symbol Meaning
 __

 30−32 IP%CFC System and sender code, set only by a
 privileged process. The packet was sent by
 <SYSTEM>IPCF if the code is 1(.IPCCC). The
 packet was sent by the system−wide
 <SYSTEM>INFO if the code is 2(.IPCCF). The
 packet was sent by the receiver’s
 <SYSTEM>INFO if the code is 3(.IPCCP).

 33−35 IP%CFM Field for return of special messages. If
 the field contains 1(.IPCFN), then the
 process’ input queue contains a packet that
 was sent to another PID, but was returned
 to the sender because it could not be
 delivered.
 __

 If execution of the MRECV% call is not successful, a packet is not
 retrieved, and an error code is returned in AC1. The execution of the
 user’s program continues at the instruction following the MRECV% call.

 7.5 SENDING MESSAGES TO <SYSTEM>INFO

 The <SYSTEM>INFO process is the central information utility for IPCF.
 It performs functions associated with names and PIDs, such as,
 assigning a PID or a name or returning a name associated with a PID.

 A process can request functions to be performed by <SYSTEM>INFO by
 executing the MSEND% monitor call (refer to Section 7.4.1). The
 message portion of the packet (that is, the packet data block) sent to
 <SYSTEM>INFO contains the request being made. In other words, the
 total request to <SYSTEM>INFO is a packet consisting of a packet
 descriptor block and a packet data block containing the request.

 7−12

 INTER−PROCESS COMMUNICATION FACILITY

 Packet Descriptor Block

 !===!
 ! flag word !
 !−−−!
 ! sender’s PID !
 !−−−!
 ! 0 !
 !−−−!
 ! pointer to request !
 !===!

 Packet Data Block

 !===!
 ! code ! function !
 ! ! !
 !−−−!
 ! PID !
 !−−−!
 ! function argument !
 !===!

 Refer to Section 7.4.1 for the descriptions of the words in the packet
 descriptor block. The receiver’s PID (word .IPCFR) is 0 when sending
 a packet to <SYSTEM>INFO.

 7.5.1 Format of <SYSTEM>INFO Requests

 As mentioned previously, the packet data block (that is, the message
 portion) of the packet contains the request to <SYSTEM>INFO.

 The first word (word .IPCI0) contains a user−defined code in the left
 half and the function being requested in the right half. The
 user−defined code is used to associate the response from <SYSTEM>INFO
 with the correct request. The functions that the process can request
 of <SYSTEM>INFO are described in Table 7−5.

 The second word (word .IPCI1) contains a PID associated with a process
 that is to receive a duplicate of any response from <SYSTEM>INFO. If
 this word is zero, the response from <SYSTEM>INFO is sent only to the
 process making the request.

 The third word (word .IPCI2) contains the argument for the function
 specified in the right half of word .IPCI0. The argument is different
 depending on the function being requested. The arguments for the
 functions are described in Table 7−5.

 7−13

 INTER−PROCESS COMMUNICATION FACILITY

 Table 7−5: <SYSTEM>INFO Functions and Arguments

 __

 Function Argument Meaning
 __

 .IPCIW name Return the PID associated with the
 given name (refer to Section 7.3.2 for
 the description of the name).

 .IPCIG PID Return the name associated with the
 given PID.

 .IPCII name in Assign the given name to the PID
 ASCIZ associated with the process making the
 request. The PID is permanent if
 IP%JWP was set in the flag word when
 the PID was originally created (refer
 to Table 7−1).

 .IPCIJ name in Identical to .IPCII function.
 ASCIZ
 __

 7.5.2 Format of <SYSTEM>INFO Responses

 Responses from <SYSTEM>INFO are in the form of a packet sent to the
 process that made the request. A copy of the response is sent to the
 PID given in word .IPCI1, if any.

 The message portion (that is, the packet data block) of the packet
 contains the response from <SYSTEM>INFO. The format of this response
 is

 !===!
 ! code ! function !
 ! ! !
 !−−−!
 ! response !
 !−−−!
 ! response !
 !===!

 The first word (word .IPCI0) contains the user−defined code in the
 left half and the function that was requested in the right half.
 These values are copied from the values given in the request.

 The second and third words (words .IPCI1 and .IPCI2) contain the
 response from the function requested of <SYSTEM>INFO. The response is

 7−14

 INTER−PROCESS COMMUNICATION FACILITY

 different depending on the function requested. The responses from the
 functions are described in Table 7−6.

 Table 7−6: <SYSTEM>INFO Responses

 __

 Function Requested Response
 __

 .IPCIW The PID associated with the name given in
 the request is returned in word .IPCI1.

 .IPCIG The name associated with the PID given in
 the request is returned in word .IPCI1.

 .IPCII No response is returned.
 __

 7.6 PERFORMING IPCF UTILITY FUNCTIONS

 A process can request various functions to be performed by executing
 the MUTIL% monitor call. Some of these functions are enabling and
 disabling PIDs, creating and deleting PIDs, and returning quotas.
 Several of the functions that can be requested are privileged
 functions. These are described in the TOPS−20 Monitor Calls Reference
 Manual.

 The MUTIL% monitor call accepts two words of argument. The length of
 the argument block is given in AC1, and the beginning address of the
 argument block is given in AC2.

 The argument block has the following format:

 !===!
 ! function code !
 !−−−!
 ! argument for function !
 !−−−!
 ! argument for function !
 !===!

 The arguments are different, depending on the function being
 requested. Any values resulting from the function requested are
 returned in the argument block, starting at the second word.

 Table 7−7 describes the functions that can be requested, the arguments
 for the functions, and the values returned from the functions.

 7−15

 INTER−PROCESS COMMUNICATION FACILITY

 Table 7−7: MUTIL% Functions

 __

 Function Meaning
 __

 .MUENB Allow the PID given to receive packets. If the
 process executing the call is not the owner of
 the PID, the process must be privileged.

 Argument
 PID

 Value Returned
 None

 .MUDIS Disable the PID given from receiving packets.
 If the process executing the call is not the
 owner of the PID, the process must be
 privileged.

 Argument
 PID

 Value Returned
 None

 .MUGTI Return the PID associated with <SYSTEM>INFO.

 Argument
 PID or job number

 Value Returned
 PID of <SYSTEM>INFO

 .MUCPI Create a private copy of <SYSTEM>INFO for the
 specified job. The caller must have IPCF
 capability enabled.

 Argument
 PID to be assigned to <SYSTEM>INFO
 PID or number of job creating private copy

 .MUDES Delete the PID given. The process executing the
 call must own the PID being deleted.

 Argument
 PID to be deleted

 Value Returned
 None

 7−16

 INTER−PROCESS COMMUNICATION FACILITY

 .MUCRE Create a PID for the process or job given. If
 the job number given is not that of the process
 executing the call, the process must be
 privileged. The flag bits that can be specified
 are IP%JWP and IP%NOA (refer to Table 7−1 for
 their descriptions).

 Argument
 flag bits in the left half, and process
 handle or job number in the right half

 Value Returned
 PID that was created

 .MUSSQ Set send and receive quotas for the specified
 PID. The caller must have IPCF capability
 enabled. The new send quota is given in bits
 18−26, and the new receive quota is given in
 bits 27−35. The receive quota applies to the
 specified PID, but the send quota applies to the
 job to which that PID belongs.

 Argumemts
 PID
 new quotas

 .MUFOJ Return the number of the job associated with the
 PID given.

 Argument
 PID

 Value Returned
 Job number associated with PID given

 .MUFJP Return all PIDs associated with the job given.

 Argument
 job number or PID belonging to the job

 Values Returned
 Two−word entries for each PID belonging to
 the job. The first word of the entry is the
 PID, and the second word has bits IP%JWP and
 IP%NOA set if appropriate (refer to Table
 7−1 for the descriptions of these bits).
 The list of entries returned is terminated
 by a zero word.

 .MUFSQ Return the send quota and the receive quota for
 the PID given.

 7−17

 INTER−PROCESS COMMUNICATION FACILITY

 Argument
 PID

 Values Returned
 Send quota in bits 18−26 and receive quota
 in bits 27−35.

 .MUFFP Return all PIDs associated with the process of
 the PID given.

 Argument
 PID

 Values Returned
 Two−word entries for each PID belonging to
 the process. The first word of the entry is
 the PID, and the second word has bits IP%JWP
 and IP%NOA set if appropriate (refer to
 Table 7−1 for the descriptions of these
 bits). The list of entries returned is
 terminated by a zero word.

 .MUSPQ Set the maximum number of PIDs allowed for the
 specified job. The caller must have IPCF
 capability enabled.

 Argument
 job number or PID
 PID quota

 .MUFPQ Return the maximum number of PIDs allowed for
 the job given.

 Argument
 Job number or PID belonging to the job

 Value Returned
 Number of PIDs allowed for the job given

 .MUQRY Return the packet descriptor block for the next
 packet in the queue of the PID given.

 Argument
 PID, −1 to return the next descriptor block
 for the process, or −2 to return the next
 descriptor block for the job

 Values Returned
 Packet descriptor block of next packet in
 queue.

 .MUAPF Associate the PID given with the process given.

 7−18

 INTER−PROCESS COMMUNICATION FACILITY

 Arguments
 PID
 process handle

 Value Returned
 None

 .MUPIC Place the specified PID on a software interrupt
 channel. An interrupt is then generated when:

 1. The MUPIC function is issued while the PID
 has one or more messages in its receive
 queue.

 2. The PID’s receive queue changes its state
 from empty to containing a message.
 Subsequent entries to a queue that is not
 empty do not cause an interrupt.

 If the channel number is given as −1, the PID is
 removed from its current channel.

 The calling process and the process that owns
 the specified PID must belong to the same job.

 Arguments
 PID
 channel number

 .MUDFI Set the PID of <SYSTEM>INFO. An error is given
 if <SYSTEM>INFO already has a PID. The caller
 must have IPCF capability enabled.

 Arguments
 PID of <SYSTEM>INFO

 .MURSP Return a PID from the system PID table. The PID
 is returned in word 2 of the argument block.
 The system PID table currently has the following
 entries:

 0 .SPIPC Reserved for Digital
 1 .SPINF PID of <SYSTEM>INFO
 2 .SPQSR PID of QUASAR
 3 .SPMDA PID of QSRMDA
 4 .SPOPR PID of ORION

 Argument

 index into system PID table

 7−19

 INTER−PROCESS COMMUNICATION FACILITY

 .MUMPS Return the maximum packet size for the PID
 given.

 Argument
 PID

 Value Returned
 Maximum packet size for PID

 .MUSKP Set PID to receive deleted PID messages. Allows
 a controller task to be notified if one of its
 subordinate tasks crashes. After this function
 is performed, if the subordinate PID is ever
 deleted (via RESET or the .MUDES MUTIL
 function), the monitor will send an IPCF message
 to the controlling PID notifying it that the
 subordinate PID has been deleted. This message
 contains .IPCKP in word 0 and the deleted PID in
 word 1.

 Argument
 Source (subordinate) PID
 Object (controller) PID

 .MURKP Return controlling PID for this subordinate PID.

 Argument
 Source (subordinate) PID
 Object (controller) PID (returned)
 __

 On successful completion of the MUTIL% monitor call, the function
 requested is performed, and any value is returned are in the argument
 block. Execution of the user’s program continues at the second
 location following the MUTIL% call.

 If execution of the MUTIL% monitor call is not successful, no
 requested function is performed and an error code is returned in AC1.
 Execution of the user’s program continues at the location following
 the MUTIL% call.

 7−20

 CHAPTER 8

 USING EXTENDED ADDRESSING

 The term "extended addressing" refers to the size of the addresses
 that TOPS−20 uses on the DECSYSTEM−20 Extended KL10 processor. Older
 versions of TOPS−20 (Release 4.1 and before) used 18−bit addresses;
 newer versions (Release 5 and after) use 30−bit addresses.

 This chapter discusses the two main activities associated with using
 TOPS−20 monitor calls with extended addressing:

 1. Writing new programs for execution in sections of memory
 other than section 0

 2. Converting existing programs so that they can be executed in
 sections other than section 0

 This chapter also contains information on hardware instructions and
 macros useful to MACRO programmers who use extended addressing.

 The discussion in this chapter depends heavily on the material in the
 DECsystem−10/DECSYSTEM−20 Processor Reference Manual. Refer to that
 manual for a description of the format of 30−bit addresses, the
 algorithm the processor uses to calculate effective addresses, and the
 way that individual machine instructions work.

 8.1 OVERVIEW

 The TOPS−20 extended address space contains 32 (decimal) sections.
 Each section contains 512 pages of 512 words each (256K words). An
 18−bit address, called a local address, can reference any word in a
 given section. A 30−bit, or global, address can reference any word in
 any section of memory.

 In contrast, TOPS−20 V4.1 and earlier provided an 18−bit, 256K−word
 address space. The Program Counter (PC) register was 18 bits. For
 each instruction executed, the first action taken was the computation
 of an 18−bit effective address. The algorithm for calculating the

 8−1

 USING EXTENDED ADDRESSING

 effective address (including indexing and indirecting rules) was the
 same for all instructions.

 Because the TOPS−20 virtual address space is limited to 32 sections,
 and section numbers longer than 5 bits are illegal, legal addresses
 are effectively limited to 23 bits. When addressing data, you can
 view this 32−section address space as one large memory area.

 From the point of view of program execution, however, memory is
 divided into 32 discrete sections. A program can have code in more
 than one section of memory, and it can execute that code (assuming the
 constraints discussed below), but it must change sections explicitly,
 as discussed below.

 Compatibility for existing programs is provided by section 0. A
 program running in section 0 behaves as though it were being executed
 on a system without extended addressing, except for certain
 instructions such as XJRSTF. For more information on the actions of
 specific instructions, see the DECsystem−10/DECSYSTEM−20 Processor
 Reference Manual.

 8.2 ADDRESSING MEMORY AND ACS

 The extended format PC contains a section field and a
 word−within−section field. When an instruction is executed, only the
 word field is incremented. Column overflow is never carried from the
 word field to the section field. If the last word of a section is
 executed, and it is not a jump instruction, then the next instruction
 is fetched from word 0 of the same section. Thus a program can only
 change sections explicitly, by means of a PUSHJ, JRST, XJRST or XJRSTF
 instruction, and only an XJRST or an XJRSTF can change control from
 section 0 to another section.

 Because a whole word cannot contain a 30−bit address and the program
 flags, the PC and flags are a two−word entity. The flag bits are in
 the first word, and the figure below represents the second word.
 Figure 8−1 shows the format of the address fields of the PC.

 0 5 6 17 18 35
 −−
 ! un− ! section ! word−within− !
 ! used ! number ! section !
 −−

 Figure 8−1: Program Counter Address Fields

 8−2

 USING EXTENDED ADDRESSING

 The word (word−within−section) field consists of 18 bits and thus
 represents a 256K−word address space similar to the single−section
 address space of release 4 and earlier. The section number field is
 12 bits, of which only the right−hand five bits can be nonzero because
 section numbers greater than 31 are illegal. The leftmost seven bits
 of the section number field must be zero. This provides room to
 address 32 separate sections, each of 256K words.

 Each section is further divided into pages of 512 words, just as in
 earlier releases. The paging facilities allow the monitor to
 determine the existence and protection of each section.

 The PC section field determines what section a program is running in.
 If the section field contains zero, the program is running in section
 0. Most extended addressing features are not available to a program
 running in section 0. All quantities (including addresses), when
 calculated from section 0, are considered to be local (18 bits).

 1. A program executing in section 0 cannot address memory in any
 other section. (One−word global byte pointers are an
 exception to this rule. Refer to Chapter 1 of the TOPS−20
 Monitor Calls Reference Manual for more information.)

 2. The program cannot jump from section 0 to another section
 unless it uses a monitor call or the XJRST or XJRSTF
 instruction.

 3. The program runs exactly as it would run on a machine without
 extended addressing.

 If the section field contains a number from 1 to 31 (decimal)
 inclusive, the program is executing in a nonzero section (a section
 other than section 0). The hardware considers addresses to be 30
 bits, and the program can use extended addressing features.

 A local address is defined as an 18−bit address in the same section as
 the program counter (PC) of the instruction. Local addresses are
 relative to the PC section. A global address is a 30−bit address,
 which therefore supplies its own section number.

 The following paragraphs explain the way effective addresses are
 calculated in nonzero sections. In addition, see the description in
 the DECsystem−10/DECSYSTEM−20 Processor Reference Manual.

 8.2.1 Instruction Format

 The format of a machine instruction is the same as on an unextended
 machine. The effective address calculation depends on the address
 field (Y, 18 bits), the index field (X, 4 bits), and the indirect
 field (I, 1 bit). Figure 8−2 shows these fields.

 8−3

 USING EXTENDED ADDRESSING

 0 8 9 12 13 14 17 18 35
 −−−
 ! ! ! ! ! !
 ! OPCODE ! AC ! I ! X ! Y !
 ! ! ! ! ! !
 −−−

 Figure 8−2: Instruction Word Address Fields

 If I and X are 0, the instruction uses neither indexing nor
 indirection, so the effective address is Y (18 bits). The section
 number, since it is not specified in the address, is taken from the
 section field of the PC. The PC section field contains the number of
 the section from which the instruction was fetched. Such an 18−bit
 address is called a local address.

 The following is an example of an instruction whose I, X and Y fields
 evaluate to an 18−bit effective address.

 3,,400/ MOVEM T,1000

 The effective address is word 1000 of the current section. The
 section from which the instruction is fetched is section 3, so the
 instruction moves the contents of register T into memory word 3,,1000.

 8.2.2 Indexing

 The first step in the effective address calculation is indexing. If
 the X field is nonzero, indexing is used. The calculation of the
 effective address then depends on the contents of the specified index
 register. Indexing may be local or global as follows:

 o If the left half of the index register contains a negative
 number or zero, the contents of the right half (bits 18−35)
 are added to Y (from the instruction word) to yield an 18−bit
 local address.

 This is the way indexing is done on an unextended machine.
 It allows a program to use the usual AOBJN pointer and stack
 pointer formats for tables and stacks that are in the same
 section as the program. Note, however, that if the left half
 of the index register contains a positive number, the results
 are not the same.

 o If the left half of the index register contains a positive
 number, the contents of bits 6−35 of the register are added
 to Y to yield a 30−bit global address.

 8−4

 USING EXTENDED ADDRESSING

 This means that instructions can reference 30−bit (global)
 addresses by means of an index register. If the Y field is
 0, the instruction refers to the address contained in X. The
 Y field can contain a positive or negative offset of
 magnitude less than 2^17.

 8.2.3 Indirection

 If the I field contains 1, the instruction specifies indirection. An
 indirect word is fetched from the address determined by Y and X. Two
 types of indirect word exist, Instruction Format Indirect Word (IFIW)
 and Extended Format Indirect Word (EFIW). They are described in the
 following section.

 8.2.3.1 Instruction Format Indirect Word (IFIW) − This word contains
 Y, X, and I fields of the same size and in the same position as
 instructions (in bits 13−35). Bit 0 must be 1, and bit 1 must be 0;
 bits 2−12 are not used.

 Figure 8−3 shows an instruction format indirect word.

 0 1 2 12 13 14 17 18 35
 −−−
 ! ! ! ! ! ! !
 !1!0! (not used) !I ! X ! Y !
 ! ! ! ! ! ! !
 −−−

 Figure 8−3: Instruction Format Indirect Word

 The effective address calculation continues with the quantities in
 this word just as for the original instruction. Indexing can be
 specified and can be local or global depending on the left half of the
 index. Further indirection can also be specified.

 Note that the default section for any local addresses produced from
 this indirect word is the section from which the word itself was
 fetched. This means that the default section can change during the
 course of an effective address calculation that uses indirection. The
 default section is always the section from which the last address word
 was fetched.

 8−5

 USING EXTENDED ADDRESSING

 8.2.3.2 Extended Format Indirect Word (EFIW) − This word also
 contains Y, X, and I fields, but in a different format. Figure 8−4
 shows an extended format indirect word.

 0 1 2 5 6 17 18 35
 −−−
 ! ! ! ! <−−−−−−−−−−−−−!− Y −−−−−−−−−−−−−−−−−−−> !
 !0!I! X ! (section) ! (word) !
 ! ! ! ! ! !
 −−−

 Figure 8−4: Extended Format Indirect Word

 If indexing is specified in this indirect word (bits 2−5 nonzero), the
 contents of the entire index register are added to the 30−bit Y to
 produce a global address. This type of indirect word never produces a
 local address. The type of address calculation used does not depend
 on the contents of the index register specified in the X field.

 Hence either Y or Y(X) can be used as an address or an offset within
 the extended address space, just as is done in the 18−bit address
 space. If further indirection is specified (bit 1 set), the next
 indirect word is fetched from Y as modified by indexing (if any). The
 next indirect word can be in instruction format or extended format,
 and its interpretation does not depend on the format of the previous
 indirect word.

 8.2.3.3 Macros for Indirection − The system file MACSYM.MAC contains
 several convenient macros for constructing indirect words. Macro
 LFIWM generates local (instruction format) indirect words. Both the
 macros EP. and GFIWM may be used to generate global (extended format)
 indirect words.

 8.2.4 AC References

 A local address in the range 0−17 (octal) references the hardware ACs
 as memory. This is true in every section of memory.

 A global address in section 1 in the range 1,,0 to 1,,17 (octal) also
 refers to the hardware ACs. A global address in any other section
 refers to memory. This means that the following behavior occurs.

 1. Addresses in the range 0−17 reference ACs as expected. The
 instruction

 MOVE 2,3

 8−6

 USING EXTENDED ADDRESSING

 fetches the contents of hardware register 3 regardless of
 what section the instruction executes in.

 2. To make a global reference to an AC, the global address must
 contain a section number of 0 or 1.

 3. Arrays can cross section boundaries. Global addresses
 specifying any section except section 1 always refer to
 memory, never to the hardware ACs. For this reason,
 incrementing the address 6,,777777, for example, yields
 address 7,,000000, which is a memory location.

 4. The ACs are regarded as local to any section; a local address
 (0−17) references the ACs from any section. Hence, a jump
 instruction which yields a local effective address of 0−17 in
 any section will cause code to be executed from the ACs.

 8.2.5 Extended Addressing Examples

 These instructions make local references within the current PC
 section:

 3,,400/ MOVE T,1000 ; fetches from 3,,1000
 JRST 2000 ; jumps to 3,,2000

 The following instructions scan table TABL, which is in the current
 section:

 MOVSI X,−SIZ
 LP: CAMN T,TABL(X) ; TABL in current section
 JRST FOUND
 AOBJN X,LP

 The following instructions scan table TABL, which is in section TSEC,
 by using a global address:

 MOVEI X,0
 LP: CAMN T,@[GFIWM TSEC,TABL(X)] ; extended format
 JRST FOUND
 CAIGE X,SIZ−1
 AOJA X,LP

 Similarly, the EP. macro can be used for the same purpose:

 MOVEI X,0
 LP: CAMN T,@[EP.<TSEC>B17!TABL(X)]
 JRST FOUND
 CAIGE X,SIZ−1
 AOJA X,LP

 8−7

 USING EXTENDED ADDRESSING

 The following examples illustrate various aspects of indexing and
 indirection in effective address calculation:

 4/100
 6,,1000/MOVE 1,@2000
 6,,2000/LFIWM @4000
 6,,4000/LFIWM 200(4)

 Effective address = 300 in section 6

 6,,SUB/ MOVE 1,@[LFIWM @ZZZ]

 6,,ZZZ: LFIWM @XXX
 XXX: LFIWM ARRAY(4)

 Effective address = ARRAY+100 in section 6

 6/14,,ADDRX
 11,,ROU/MOVE 1,@[LFIWM (6)]

 14,,ADDRX: LFIWM 100

 Effective address = 14,,100

 8.2.6 Immediate Instructions

 Each effective address calculation yields a 30−bit address, defaulting
 the section if necessary. Immediate instructions use only the
 low−order 18 bits of this as their operand, however, and set the
 high−order 18 bits to 0. Hence instructions such as MOVEI and CAI
 produce identical results regardless of the section in which they are
 executed.

 Two immediate instructions retain the section field of their effective
 addresses. These are:

 o XMOVEI (opcode 415) Extended Move Immediate

 o XHLLI (opcode 501) Extended Half Word Left to Left Immediate

 8.2.6.1 XMOVEI − The XMOVEI instruction loads the 30−bit effective
 address into the AC, and sets bits 0−5 to 0. If no indexing or
 indirection is used, the number of the current section is copied from
 the PC to the AC. This instruction can replace MOVEI when a global
 address is needed.

 8−8

 USING EXTENDED ADDRESSING

 The following example shows the use of the XMOVEI instruction in a
 subroutine call. The subroutine is in section XSEC, but the argument
 list is in the same section as the calling program.

 XMOVEI AP,ARGLIST
 PUSHJ P,@[GFIWM XSEC,SUBR]

 The subroutine can reference the arguments with the following
 instruction.

 MOVE T,@1(AP)

 To construct the addresses of arguments, the subroutine can use the
 following instruction.

 XMOVEI T,@2(AP)

 The last two instructions assume that register AP contains the
 argument list pointer. If the address the calling program placed in
 AP is an IFIW, the section number in the effective address is that of
 the calling program. If the address the calling program placed in AP
 is an EFIW, the section number in the effective address of the
 argument block is determined by the section number the calling program
 placed in AP.

 The argument list would be found in the caller’s section because of
 the global address in AP. The section of the effective address is
 determined by the caller, and is implicitly the same as the caller if
 an IFIW is used as the arglist pointer, or is explicitly given if an
 EFIW is used.

 8.2.6.2 XHLLI − The XHLLI instruction replaces the left half of the
 accumulator with the section number of the PC, and places zero in the
 right half of the AC. This instruction is useful for constructing
 global addresses.

 8.2.7 Other Instructions

 The instructions discussed here are affected by extended addressing,
 but not necessarily in the way that their effective addresses are
 calculated. In addition to the material presented here, see the
 DECsystem−10/DECSYSTEM−20 Processor Reference Manual regarding the
 following instructions: LUUOs, BLT, XBLT, XCT, XJRSTF, XJEN, XPCW,
 SFM.

 8−9

 USING EXTENDED ADDRESSING

 8.2.7.1 Instructions that Affect the PC − These instructions are
 PUSHJ, POPJ, JRST. PUSHJ stores a 30−bit PC address, but stores no
 flags. It sets bits 0−5 of the destination word to 0.

 POPJ restores a 30−bit PC address from the stack, but does not restore
 the flags. It also sets bits 0−5 of the destination word to 0.

 The JSA and JRA instructions can be used only within a section. In
 section 0 the JSP and JSR instructions can store flags,,PC but then
 cannot transfer out of section 0. The JSP and JSR instructions can
 store flags,,PC in nonzero sections and then can transfer into any
 other section (if the address is specified with indexing or
 indirection).

 8.2.7.2 Stack Instructions − PUSHJ, POPJ, PUSH, POP, and ADJSP.
 These instructions use a local or global address for the stack
 according to the contents of the stack pointer. Whether the stack
 address is local or global depends on the same rules as those that
 govern indexing in effective address calculation. (See section
 8.2.2.) It is always best to use the ADJSP instruction when working
 with stacks. This instruction works in any section and will indicate
 when a pushdown overflow error occurs.

 In brief, if the left half of the stack pointer is zero or negative
 (prior to incrementing or decrementing), the pointer references a
 local address and the address in its right half is the address of the
 current item in the stack. The stack pointer is incremented or
 decremented by adding or subtracting one from both sides,
 respectively.

 If the left half of the stack pointer is positive, the entire word is
 taken as a global address. The stack pointer is incremented by adding
 1, and decremented by subtracting 1.

 A stack that contains global addresses can be used the same way a
 local stack is used. The global stack, however, can contain pointers
 to routines in other sections.

 To protect against stack overflow and underflow, make the pages before
 and after the stack inaccessible. This method must be used because a
 global stack has no room for a count in the left half of the pointer.

 8.2.7.3 Byte Instructions − To reference a byte in another section,
 you must use either a one−word, or a two−word, global byte pointer.
 Both global and local byte pointers are legal arguments to monitor
 calls from nonzero sections but there are some restrictions on the use
 of one−word global byte pointers from section 0. See Section 8.3 for
 further information.

 8−10

 USING EXTENDED ADDRESSING

 Chapter 1 of the TOPS−20 Monitor Calls Reference Manual describes
 one−word global byte pointers. The DECsystem−10/DECSYSTEM−20
 Processor Reference Manual describes two−word global byte pointers.

 8.3 USING MONITOR CALLS

 If a program runs in a single section, even though that section is not
 section 0, most monitor calls execute exactly the way they do in
 section 0. This is because when no section number is specified, the
 current section is the default.

 The GTFDB% call, for example, requires that AC3 contain the address of
 the block in which to store the data it obtains from the file data
 block. This address can be an 18−bit address regardless of what
 section the monitor call is made from. When the monitor sees that the
 address is local, it obtains the section number from the PC of the
 process that makes the call.

 The same is true of calls that accept page numbers. If a 9−bit page
 number is passed as an argument, the monitor obtains the section
 number from the PC of the process that made the call. Monitor calls
 arguments are discussed in Chapter 1 of the TOPS−20 Monitor Calls
 Reference Manual.

 It is sometimes desirable to specify addresses in section 0 when
 executing a JSYS from a nonzero section. The bit PM%EPN for PMAP%,
 and FH%EPN for JSYSs that accept fork handles, prevent the current
 section (the section in which a program is running) from being the
 target section for the monitor call’s arguments.

 Another restriction on arguments passed to monitor calls executed in
 sections other than section 0 concerns universal device designators,
 which have the format 5xxxxx,,xxxxxx or 6xxxxx,,xxxxxx (.DVDES).
 Universal device designators are not legal except in section 0. This
 is because of the existence of one−word global byte pointers, which
 can have the same format.

 Thus monitor calls that accept either a device designator or a byte
 pointer when called from section 0 do not accept universal device
 designators in any other section. Other device designators, such as
 .TTDES (0,,4xxxxx), can be used in any section. Conversely, these
 monitor calls that can accept either universal device designators or
 byte pointers do not accept one−word global byte pointers in section
 0.

 The calls SIR% and RIR% should not be used in sections other than
 section 0. These calls work in other sections only if all the code
 associated with these calls exists in the same section as the code
 that makes the call.

 8−11

 USING EXTENDED ADDRESSING

 For example, if an SIR% call is executed in section 4, it executes
 correctly if and only if the code that generates the interrupts, the
 interrupt−processing routines, and all associated tables are also
 located in section 4. Thus, in programs intended to run in a section
 other than section 0, the XSIR% and XRIR% calls, described in Chapter
 4, should be used in place of SIR% and RIR%. In general, it is
 recommended that the extended form of monitor calls be used since this
 form works in any section, including section 0.

 8.3.1 Mapping Memory

 The PMAP% monitor call accepts an 18−bit page number, half of which is
 a section number. Thus PMAP% can be used to map a page from one
 section to another. If the destination section does not exist, that
 section will be created.

 The SMAP% monitor call maps one or more sections of memory. It works
 like the PMAP call, but maps sections instead of pages. If the
 destination section does not exist, SMAP% creates the section.

 Access to the sections in a process map is determined by the same
 algorithm that determines access to a page within a given section. If
 a process section and a page in that section have different accesses,
 the access privileges are ANDed together. The process requesting
 access to the page gains access only if it has access rights at least
 equal to the ANDed protections.

 For example, if a process has read access to a section and maps a page
 into that section for which the process has read and write access, the
 page is mapped, but the process gets only read access to the mapped
 page.

 The following sections describe the SMAP% functions.

 8.3.1.1 Mapping File Sections to a Process − This function maps one
 or more sections of a file to a process. All pages that exist in the
 source sections are mapped to the destination sections. Access to the
 mapped pages is determined by ANDing the access allowed to the file
 and the access specified in the SMAP% call.

 Although files do not actually have section boundaries, this monitor
 call views them as having sections that consist of 512 contiguous
 pages. Each file section starts with a page number that is an integer
 multiple of 512.

 This call cannot map a process memory section to a file. To map a
 process section to a file, use the PMAP% monitor call to map the
 section page−by−page.

 8−12

 USING EXTENDED ADDRESSING

 This function of the SMAP% call requires three words of arguments, as
 follows:

 AC1: source identifier: JFN,,file section number

 AC2: destination identifier: fork handle,,process section number

 AC3: flags,,count

 The flags determine access to the destination section, and the count
 is the number of contiguous sections to be mapped. The count must be
 between 0 and 37 (octal). The flags are as follows.

 B2(SM%RD) Allow read access

 B3(SM%WR) Allow write access

 B4(SM%EX) Allow execute access

 B18−35 The number of sections to map. This number must be
 between 1 and 37 (octal).

 8.3.1.2 Mapping Process Sections to a Process − The SMAP% monitor
 call also maps sections from one process to another process. In
 addition, you can map one section of a process to another section of
 the same process. The SMAP% call maps all pages that exist in the
 source section to corresponding pages in the destination section.

 If you map a source section into a destination section with SM%IND
 set, SMAP% creates the destination section using an indirect pointer.
 This means that the destination section will contain all pages that
 exist in the source section, and the contents of the destination pages
 will be identical to the contents of the source pages.

 Furthermore, after SMAP% has mapped the destination section, changes
 that occur in the source section map cause the same changes to be made
 in the destination section map. This ensures that both the source
 section and the destination section contain the same data.

 If SM%IND is not set, SMAP% creates the new section using a shared
 pointer. After SMAP% maps the destination section, changes that occur
 in the source section’s map do not cause any change in the destination
 section’s map. Thus after a short time the source and destination
 sections might contain different data.

 If you request a shared pointer (SM%IND not set) to the destination
 section, what happens depends on the contents of the source section
 when the SMAP% call executes. The outcome is one of the following.

 8−13

 USING EXTENDED ADDRESSING

 1. If the source section does not exist, the SMAP% call creates
 the section.

 2. If the source is a private section, a mapping to the private
 section is established, and the destination process is
 co−owner of the private section.

 3. If the source section contains a file section, the source
 section is mapped to the destination section.

 4. If the source section map is made by means of an indirect
 section pointer, SMAP% follows that pointer until the source
 section is found to be nonexistent, a private section, or a
 section of a file.

 This SMAP% function requires three words of arguments in AC1 through
 AC3.

 AC1: Source identifier: fork handle,,section number

 AC2: Destination identifier: fork handle,,section number

 AC3: access flags,,the number of contiguous sections to map.

 The number of sections mapped, the number in the right
 half of AC3, must be between 1 and 37.

 The flags determine access to the destination section.
 The flags are as follows:

 B2(SM%RD) Allow read access

 B3(SM%WR) Allow write access

 B4(SM%EX) Allow execute access

 B6(SM%IND) Map the destination section using an indirect
 section pointer. Once the destination section
 map is created, the indirect section pointer
 causes the destination section map to change
 in exactly the same way that the source
 section map changes.

 B18−35 Count of the number of contiguous sections to
 be mapped.

 8.3.1.3 Creating Sections − Before you can use a nonzero section of
 memory, you must create it. If your program references a nonzero
 section of memory that does not exist (that is not mapped), the
 instruction that makes the reference fails.

 8−14

 USING EXTENDED ADDRESSING

 This SMAP% function requires three words of arguments in AC1 through
 AC3, as follows:

 AC1: 0

 AC2: destination identifier: fork handle,,section number

 AC3: flags,,count

 The flags determine access to the destination section, and the count
 is the number of contiguous private sections to be created. This
 count must be between 1 and 37.

 The flags in the left half of AC3 are as follows:

 B2(SM%RD) Allow read access

 B3(SM%WR) Allow write access

 B4(SM%EX) Allow execute access

 B6(SM%IND) Create the section using an indirect pointer

 B18−35 The number of sections to create. This number
 must be between 1 and 37. All created sections
 are contiguous.

 8.3.1.4 Unmapping a Process Section − You can use the SMAP% monitor
 call to unmap one or more sections of memory in a process. The
 contents of the section are lost.

 If the section contains pages mapped from a file, this function does
 not cause the unmapped sections to be written back to the file from
 which they were mapped. Such pages must be mapped to the file by
 means of the PMAP% call.

 This function requires three words of arguments in AC1 through AC3, as
 follows.

 AC1: −1

 AC2: Destination identifier: fork handle,,section number

 AC3: 0,,count
 The count is the number of contiguous sections to be
 unmapped. This number must be between 1 and 37.

 8−15

 USING EXTENDED ADDRESSING

 8.3.2 Starting a Process in Any Section

 You can use most of the calls described in Chapter 5 to control
 programs that run in a nonzero section. The SFORK% monitor call is an
 exception, and will not start a program in a nonzero section.

 The XSFRK% monitor call starts a process in any section of memory. If
 the process is frozen (by means of the FFORK% call), XSFRK% changes
 the double−word PC, but does not resume execution of the process. To
 resume the execution of any frozen fork, use the RFORK% call.

 The XSFRK% call requires three words of arguments in AC1 through AC3.

 AC1: flags,,process handle

 Flags:

 SF%CON(1B0) continue a process that has halted.
 If SF%CON is set, the address in AC3
 is ignored and the process continues
 from where it was halted.

 AC2: PC flags,,0

 AC3: address to which this call is to set the PC

 The XSFRK% call also starts a process in section 0. To do so, set the
 left half of AC3 to zero and the right half of AC3 to the address in
 section 0 at which you want the process to start.

 Most other calls consider an address with a zero in the left half to
 be a local address. The XSFRK% call, however, uses the contents of
 AC3 to set the PC. A PC with zero in the left half indicates an
 address in section 0.

 8.3.3 Setting the Entry Vector in Any Section

 The SEVEC% monitor call has room in its argument ACs for only a
 half−word address, so it cannot be used to set a process entry vector
 to an address in a nonzero section. The XSVEC% call, on the other
 hand, uses an AC for the address of the entry vector, and another AC
 for the length of the entry vector, and can specify an entry vector in
 any section of memory.

 The XSVEC% call requires three words of arguments in AC1 through AC3.

 AC1: process handle
 AC2: length of the entry vector, or 0
 AC3: address of the beginning of the entry vector

 8−16

 USING EXTENDED ADDRESSING

 The length of the entry vector specified in AC2 must be less than 1000
 words. If AC2 contains 0, TOPS−20 assumes a default length of two
 words.

 8.3.4 Obtaining Information About a Process

 Although the monitor calls described in Chapter 5 work in any section
 of memory, several of them can only return information about the
 section in which they are executed. The following paragraphs describe
 the monitor calls you can use to obtain information about any section
 of memory.

 8.3.4.1 Memory Access Information − Several kinds of information
 about memory are important. Among them are whether a page or section
 exists (is mapped), and, if so, what the access to a page or section
 is. The RSMAP% and XRMAP% calls provide this information.

 The RSMAP% monitor call reads a section map, and provides information
 about the mapping of one section of the address space of a process.
 RSMAP% requires one word of arguments in AC1: a fork handle in the
 left half, and a section number in the right half. It returns the
 access information in AC2.

 The map information that RSMAP% returns in AC1 can be the following:

 −1 no current mapping present (the section does not exist)

 0 the mapping is a private section

 n,,m where n is a fork handle or a JFN, and m is a section
 number. If n is a fork handle, the mapping is an indirect
 or shared mapping to another fork’s section. If n is a
 JFN, the mapping is a shared mapping to a file section.

 The access information bits returned in AC2 are the following:

 B2(SM%RD) Read access is allowed

 B3(SM%WR) Write access is allowed

 B4(SM%EX) Execute access is allowed

 B5(PA%PEX) The section exists

 B6(SM%IND) The section was created using an indirect pointer.

 8−17

 USING EXTENDED ADDRESSING

 Although the RSMAP% call does not return information on individual
 pages, the data it does return is useful in preventing error returns
 from the XRMAP% monitor call.

 The XRMAP% call returns access information on a page or group of pages
 in any section of memory. Although the RMAP% call returns access data
 about a page in the current section, and you can use the RSMAP% call
 in any section of memory, you must use the XRMAP% call to obtain
 information about pages in any section other than the current section.

 The XRMAP% call requires two words of arguments in AC1 and AC2.

 AC1: process handle,,0

 AC2: address of the argument block

 The argument block addressed by AC2 has the following format:

 !===!
 ! Length of the argument block, including this word !
 !===!
 ! number of pages in this group on which to return data !
 !−−−!
 ! number of the first page in this group !
 !−−−!
 ! address at which to return the data block !
 !===!
 \ . \
 \ . \
 \ . \
 !===!
 ! number of pages in this group on which to return data !
 !−−−!
 ! number of the first page in this group !
 !−−−!
 ! address at which to return the data block !
 !===!

 The number of words in the argument block is three times the number of
 groups of pages for which you want access data, plus one. Each group
 of pages requires three arguments: the number of pages in the group,
 the number of the first page in the group, and the address at which
 the monitor is to return the access data.

 Note that the address to which the monitor returns data should be in a
 section of memory that already exists. If it does not exist, the call
 will fail with an illegal memory reference.

 The access information returned for each group of pages specified in
 the argument block is the following:

 8−18

 USING EXTENDED ADDRESSING

 B2(RM%RD) read access allowed
 B3(RM%WR) write access allowed
 B4(RM%EX) execute access allowed
 B5(RM%PEX) page exists
 B9(RM%CPY) copy−on−write access

 For each page specified in the argument block that does not exist,
 XRMAP% returns a −1. It also returns a zero flag word for each such
 page. The data block to which XRMAP% returns the access information
 should therefore contain twice as many words as the number of groups
 of pages about which you want information.

 If you execute an XRMAP% call to obtain information about a page in a
 nonexistent section, the XRMAP% call fails with an illegal memory
 reference. For this reason it is recommended to execute an RSMAP%
 call to determine that the section exists before you use XRMAP% to
 obtain information about any page within that section.

 8.3.4.2 Entry Vector Information − To obtain the entry vector of a
 process in any section of memory, use the XGVEC% call. This call
 returns the length of the entry vector in AC2 and the address of the
 entry vector in AC3.

 The XGVEC% call requires one word of argument: in AC1, the handle of
 the fork for which you want the entry vector.

 8.3.4.3 Page−Failure Information − A page−fail word, described in the
 DECsystem−10/DECSYSTEM−20 Processor Reference Manual, contains
 information that allows a program to determine the cause of a page
 trap and the address of the instruction that caused the trap. This
 information allows a program to correct the cause of the page−fail
 trap. Once the program has corrected the cause of the page−fail trap,
 the program can continue execution.

 The XGTPW% call obtains the page−fail word from the monitor’s data
 base, and returns it to the calling program’s address space. The
 XGTRP% call requires two words of arguments in AC1 and AC2.

 AC1: process handle

 AC2: address of the block in which to return data

 8.3.5 Program Data Vectors

 Program Data Vectors (PDVs) are data structures in a process that are
 known to the monitor by name and location. They contain information

 8−19

 USING EXTENDED ADDRESSING

 about the program segments within a process. The PDV is a block of
 data that LINK writes into memory when loading and linking a program.
 The PDV resides in memory as a part of the program, and starts at a
 program data vector address (PDVA). PDVs are used to allow user
 programs to obtain information about other programs that can be mapped
 into a process. PDVs and PDVAs are manipulated by using the PDVOP%
 monitor call. (Refer to the TOPS−20 Monitor Calls Reference Manual
 for a complete description of the PDVOP% monitor call.) The PDVOP%
 monitor call can be used to obtain information about an execute−only
 process.

 Certain words in the PDV (for example, .PVNAM) point to blocks of
 information. These words are in either IFIW or EFIW format (see
 Sections 8.2.3.1 and 8.2.3.2) except that they cannot use indexing,
 and any indirect chain pointed to by the word cannot go through an
 accumulator. This allows a program to find the address of a block
 pointed to by a PDV word by simply using an XMOVEI instruction. For
 example,

 XMOVEI AC1,@.PVNAM(AC2)

 puts into AC1 the global address of the name of the PDV whose PDVA is
 in AC2.

 8.3.5.1 Manipulating PDV Addresses − For the process specified in
 word .POPHD of the argument block, the .POGET function of the PDVOP%
 monitor call returns all PDVAs within the range of addresses specified
 in words .POADR and .POADE of the argument block. (See the
 description of the PDVOP% monitor call in the TOPS−20 Monitor Calls
 Reference Manual for the format of the argument block.) The address
 range supplied by words .POADR and .POADE determines which PDVAs are
 affected by any given call.

 The .POADD function of the PDVOP% monitor call adds the PDVAs
 specified in the data block to the system’s data base for the
 specified process. The PDVAs must be in ascending order within the
 data block.

 The .POREM function of the PDVOP% monitor call removes a set of PDVAs
 from the system’s data base for the specified process. Those removed
 are the ones within the range specified by words .POADR and .POADE of
 the argument block.

 8.3.5.2 PDV Names − The .PONAM function of the PDVOP% monitor call
 returns the ASCIZ name of a PDV in memory. Word .POADR of the
 argument block must contain a valid PDVA for the specified process.
 The name returned is the one to which word .PVNAM of the PDV points.
 The string returned by .PONAM is placed into the data block.

 8−20

 USING EXTENDED ADDRESSING

 For the specified process, the .POLOC function returns in the data
 block all the PDVAs of PDVs with the specified name. The byte pointer
 in AC3 points to the PDV name. Function .POLOC is affected by
 .POADR/.POADE words.

 The following rules apply to the assignment of PDV names. If these
 rules are followed, it is quite unlikely that two packages that want
 to run in the same process will discover a conflict in PDV names.

 1. PDV names assigned by DIGITAL will contain the character "%"
 at the end (or elsewhere). No PDV names assigned by users
 should contain the "%" character.

 2. All PDV names containing the character "." are reserved to
 DIGITAL for future use.

 3. The character "$" is reserved for a special use: PDV names
 of the form string1$string2 are reserved for the special
 class of use named by string1. Rules 1 and 2 still apply in
 this case.

 As a general principle, avoid using PDV names that are insufficiently
 specific; use of such names invites conflicts with other packages.

 8.3.5.3 Version Number − The .POVER function of the PDVOP% monitor
 call returns in the data block the version of a program in memory.
 Word .POADR must contain a valid PDVA for the specified process. The
 version returned is the one that word .PVVER of the PDV contains.

 For more information on program data vectors, including explanations
 of the static memory map (pointed to by word .PVMEM) and the symbol
 table vector (pointed to by word .PVSYM), refer to the TOPS−20 LINK
 Reference Manual.

 8.4 MODIFYING EXISTING PROGRAMS

 Existing programs can be modified to run in any section of memory,
 including both section 0 and all other sections. The sections that
 follow discuss the changes that must be made to an existing program so
 that it runs in a single nonzero section.

 8.4.1 Data Structures

 Stacks, tables, and other data structures used in the past have often
 contained words with an address in the right half and a count in the
 left half. The count could be positive or negative because all

 8−21

 USING EXTENDED ADDRESSING

 programs ran only in section 0, and when the contents of a word were
 evaluated for Effective Address calculation or address use in section
 0, only the right half was considered.

 In all other sections, the entire word is considered to be an address.
 If the left half of the word is negative, the left half is ignored
 when the address is evaluated, and the address is local. Thus for a
 word to contain an address in the right half and a count in the left
 half, the count must be negative.

 8.4.1.1 Index Words − Be sure the left halves of index words contain
 a nonpositive quantity. To use the left half of an index register to
 hold a count, the count must be negative. If the left half is unused,
 it must be zero so that the effective address is a local address. If
 the left half contains a positive number, the indexed address will be
 global.

 8.4.1.2 Indirect Words − To be sure that an indirect word in a
 nonzero section is evaluated as a local address, always set bit 0 of
 the indirect word. Argument lists that produce local addresses in
 section 0, for example, will produce local addresses in any section if
 bit 0 is set.

 8.4.1.3 Stack Pointers − As mentioned above, the left halves of stack
 pointers must contain zero or a negative number to produce local
 addresses. A negative number in the left half is considered to be a
 count. A positive number in the left half is considered to be a
 section number.

 8.5 WRITING MULTISECTION PROGRAMS

 Multisection programs, programs that use more than one section of
 memory, are similar to single−section programs that run in nonzero
 sections. They allow you to place tables needed for processing
 interrupts in any section of memory (See Chapter 4), to use very large
 arrays, and to write modules of code that can be dynamically mapped
 into a section of memory and executed.

 In a single−section program, local addresses and byte pointers are
 sufficient to specify any word or byte in the program’s address space.
 In a multisection program, local addresses and byte pointers cannot
 specify any word or byte in the program’s address space. Most monitor
 calls use only one AC per argument, so passing two−word global byte
 pointers is not possible. Thus, it is necessary to:

 8−22

 USING EXTENDED ADDRESSING

 o keep monitor call arguments in the same section of memory as
 the code making the call, or

 o use global arguments, or

 o use the global form of the monitor call.

 In many multisection programs it is not necessary to keep all the
 arguments required by a call in the same section as the code that
 makes the call. Global arguments are required, and they take several
 forms. Chapter 1 of the TOPS−20 Monitor Calls Reference Manual gives
 details on the use of these arguments.

 The following program computes a file checksum by XORing the words in
 all file pages. The program is loaded into section 0 and maps itself
 into section 1. It then jumps into section 1 to access the file data
 loaded into section 15.

 TITLE CHKSUM − COMPUTE A FILE CHECKSUM
 SEARCH MONSYM ;STANDARD UNIVERSAL FILES
 SEARCH MACSYM
 .REQUIRE SYS:MACREL ;GET JSERR SUPPORT ROUTINES

 STDAC. ;DEFINE STANDARD ACS

 ; PROGRAM CONSTANTS

 PDLSIZ==100 ;SIZE OF STACK
 CODSEC==1 ;SECTION TO MAP CODE INTO
 DATSEC==15 ;SECTION TO MAP FILE DATA INTO
 DATPAG==100 ;PAGE WITHIN DATSEC FOR FILE DATA
 PAGSIZ==1000 ;SIZE OF A PAGE

 CHKSUM: RESET% ;RESET THE WORLD
 MOVE P,[IOWD PDLSIZ,PDL]
 MOVE T1,[.FHSLF,,0] ;MAP THIS FORKS SECTION 0
 MOVE T2,[.FHSLF,,CODSEC] ;TO EXTENDED CODE SECTION
 MOVX T3,SM%RD!SM%WR!SM%EX!SM%IND+1
 ;INDIRECT POINTER RD,WR,EX 1 SECTION
 SMAP%
 EJSHLT ;UNEXPECTED FATAL ERROR
 GETFIL: SETZM FILJFN ;SAY NO FILE SEEN
 TMSG <
 ENTER FILE SPEC TO CHECKSUM: > ;PROMPT USER FOR FILE
 MOVX T1,GJ%SHT!GJ%OLD!GJ%FNS ;OLD FILE
 MOVE T2,[.PRIIN,,.PRIOU] ;READ FILE SPEC FROM TERMINAL
 GTJFN% ;GET FILE SPEC
 ERJMPR BADFIL ;CANNOT GET FILE TELL USER
 MOVEM T1,FILJFN ;SAVE FILE JFN
 MOVX T2,FLD(^D36,OF%BSZ)!OF%RD
 ;REQUEST READ ACCESS AND 36 BIT BYTES
 OPENF% ;OPEN THE FILE

 8−23

 USING EXTENDED ADDRESSING

 ERJMPR BADFIL ;CANNOT OPEN FILE TELL USER

 XJRST [CODSEC,,DOCHKS] ;ENTER EXTENDED SECTION
 ;AND DO CHECKSUM

 BADFIL: JSERR ;PRINT ERROR MESSAGE
 SKIPE T1,FILJFN ;IS THERE A JFN
 RLJFN% ;YES. RELEASE IT
 EJSERR ;PRINT ERROR IF ANY
 JRST GETFIL ;AND TRY TO GET FILE AGAIN

 ; THE FOLLOWING CODE RUNS IN A NONZERO SECTION AND
 ; DOES A CHECKSUM OF THE FILE STORED IN FILJFN

 DOCHKS: SETZB Q1,Q2 ;Q1 HOLDS THE CHECKSUM.
 ;INITIALLY ZERO
 ;Q2 IS THE CURRENT FILE PAGE NUMBER
 CHKLOP: MOVE T1,Q2 ;GET FILE PAGE NUMBER
 HRL T1,FILJFN ;AND FILE JFN
 FFUFP% ;FIND FIRST USED PAGE
 ERJMPR NOPAGE ;CAN’T GO ANALYZE ERROR
 HRRZ Q2,T1 ;REMEMBER CURRENT PAGE NUMBER
 AOS Q2 ;USE NEXT HIGHER PAGE NEXT TIME
 MOVE T2,[<DATSEC>B26+DATPAG] ;THROUGH LOOP TO DATA PAGE
 HRLI T2,.FHSLF ;IN DATA SECTION OF THIS FORK
 MOVX T3,PM%RD ;READ ACCESS
 PMAP% ;MAP THE FILE PAGE
 EJSHLT ;UNEXPECTED FATAL ERROR
 HRLI T1,DATSEC ;T1 IS INDEX INTO DATA PAGE.
 HRRI T1,DATPAG*PAGSIZ ;SETUP SECTION AND PAGE ADDRESS
 MOVEI T2,PAGSIZ ;T2 COUNTS THE WORDS IN A PAGE

 ; THE FOLLOWING LOOP DOES THE CHECKSUM FOR A PAGE

 XORLOP: XOR Q1,(T1) ;CHECKSUM THIS WORD
 AOS T1 ;STEP TO NEXT WORD
 SOJG T2,XORLOP ;DO THE WHOLE PAGE

 SETO T1, ;UNMAP THE FILE PAGE
 MOVE T2,[<DATSEC>B26+DATPAG] ;TO DATA PAGE IN DATA
 HRLI T2,.FHSLF ;SECTION OF THIS FORK
 MOVX T3,PM%RD
 PMAP%
 EJSHLT ;UNEXPECTED FATAL ERROR
 JRST CHKLOP ;LOOP FOR MORE PAGES

 ; HERE WHEN FFUFP% FAILS

 NOPAGE: CAIE T1,FFUFX3 ;NO USED PAGE FOUND?
 JSHLT ;NO. UNEXPECTED FATAL ERROR

 ; PRINT THE CHECKSUM AND QUIT

 8−24

 USING EXTENDED ADDRESSING

 TMSG <
 THE FILE CHECKSUM IS: >
 MOVX T1,.PRIOU ;PRINT IT ON THE TERMINAL
 MOVE T2,Q1 ;GET THE CHECKSUM
 MOVX T3,NO%MAG!FLD(^D8,NO%RDX) ;UNSIGNED OCTAL NUMBER
 NOUT%
 EJSHLT ;UNEXPECTED FATAL ERROR

 MOVE T1,FILJFN ;GET FILE AGAIN
 CLOSF% ;CLOSE IT
 EJSHLT ;UNEXPECTED FATAL ERROR

 HALTF% ;STOP PROGRAM
 XJRST [CHKSUM] ;JUMP BACK TO SECTION 0 AND
 ;START OVER IF USER CONTINUES

 ; STORAGE

 PDL: BLOCK PDLSIZ ;STACK
 FILJFN: BLOCK 1 ;FILE JFN

 END CHKSUM

 8−25

 INDEX

 −A− Arguments (Cont.)
 GTJFN% short form, 3−4
 AC, 1−2 IIC%, 5−19
 global reference, 8−7 JFNS%, 3−33
 references, 8−6 JSYS, 1−2, 1−3
 Access monitor calls, 1−3
 copy−on−write, 5−5 MRECV%, 7−9
 file, 3−2, 3−16 MSEND%, 7−7
 file append, 3−16 MUTIL%, 7−15
 file frozen, 3−16 OPENF%, 3−16
 file read, 3−16 PMAP%, 3−26, 3−28, 5−14
 file restricted, 3−16 PMAP% JSYS, 8−15
 file thawed, 3−16 RDTTY%, 2−9
 file unrestricted, 3−16 SFORK%, 5−15
 file write, 3−16 SIN%, 3−22
 page, 5−5 SIR%, 4−6
 Access bits SMAP%, 3−29, 8−13, 8−14, 8−15
 OPENF%, 3−17 SOUT%, 3−23
 PMAP%, 3−26 XGTPW%, 8−19
 Accumulator (AC), 1−2 XRIR%, 4−15
 Accumulators, 1−3 XRMAP% JSYS, 8−18
 global reference, 8−7 XSFRK%, 8−16
 hardware, 8−6 XSIR%, 4−7
 references, 8−6 XSVEC% JSYS, 8−16
 Address ASCII strings, 2−1, 3−21
 global, 8−1, 8−6 ASCIZ pseudo−op, 1−6
 local, 8−4, 8−6 ASCIZ strings, 2−1, 3−21
 Address space, 8−1, 8−2 ATI% JSYS, 4−13
 process, 1−6, 5−1, 5−11
 Addressing −B−
 extended, 8−1
 Addressing ACs, 8−2 BIN% JSYS, 1−5, 3−21
 Addressing memory, 8−2 example, 1−5
 ADJSP instruction, 2−2, 8−10 Block
 AIC% JSYS, 4−9, 4−17, 5−4 packet data, 7−2
 AOBJN pointer, 8−4 packet descriptor, 7−2
 Argument block BLT instruction, 8−9
 DEQ%, 6−14 BOUT% JSYS, 3−21
 ENQ%, 6−8 Byte, 2−1, 3−1
 ENQC%, 6−15 reading a, 2−8
 GTJFN% long form, 3−13 transferring, 3−21
 Arguments writing a, 2−8
 CFORK%, 5−8 Byte instructions, 8−10
 DEQ%, 6−12 Byte manipulation instructions,
 DIC%, 4−16 2−2
 ENQ% JSYS, 6−6 ADJSP, 2−2
 ENQC%, 6−14 IBP, 2−2
 GET%, 5−11 ILDB, 2−2

 Index−1

 Byte pointer, 8−10 Deferred mode
 global, 8−10 terminal interrupt, 4−14
 local, 8−10 Deleting inferior process, 5−20
 one−word global, 2−2, 8−10 DEQ% JSYS, 6−2, 6−6, 6−12
 system standard for JSYS, 2−2 argument block, 6−14
 two−word global, 2−2, 8−10 arguments, 6−12
 functions, 6−12
 −C− Descriptor block
 packet, 7−2
 Calling sequence Designator
 monitor calls, 1−3 destination, 3−20
 Capability words, 5−11 primary input, 2−2, 3−20
 CFORK% JSYS, 5−4, 5−8, 5−15, 5−19 primary output, 2−2, 3−20
 arguments, 5−8 source, 3−20
 execution, 5−10 universal device, 8−11
 Changing sections, 8−2 Destination designator, 3−20
 Channel Device designator
 deactivating, 4−16 universal, 8−11
 panic, 4−5, 4−10, 4−11 DIC% JSYS, 4−16
 Channel assignments arguments, 4−16
 software interrupt, 4−4 DIR% JSYS, 4−16
 Channel table (CHNTAB), 4−7 Direct process control, 5−4
 CHNTAB, 4−7 Disabling interrupt system, 4−16
 CIS% JSYS, 4−17 DTI% JSYS, 4−17
 Clearing interrupt system, 4−17
 CLOSF% JSYS, 3−30 −E−
 example, 3−31
 execution, 3−31 Editing functions, 2−9
 flag bits, 3−30 Effective address, 8−1
 Closing a file, 3−30 Effective address calculation,
 Communication 8−3, 8−8
 process, 1−6 example, 8−8
 Communication facility indexing, 8−8
 inter−process, 7−1 indirection, 8−8
 Control bits extended, 8−3
 RDTTY%, 2−10 immediate instructions, 8−8
 Control process, 1−6 indexing, 8−5
 Copy−on−write access, 5−5 indirection, 8−5
 Counter nonzero sections, 8−3
 program, 8−1 EFIW, 8−6, 8−20
 Creating sections, 8−14 EIR% JSYS, 4−9, 4−11, 4−17, 5−4
 EJSERR macro, 1−5
 −D− EJSHLT macro, 1−5
 ENQ quota, 6−3
 Data block ENQ% JSYS, 5−4, 6−2, 6−6, 6−17
 packet, 7−2 argument block, 6−8
 Data transfer, 2−1 arguments, 6−6
 Data transfers, 3−19 functions, 6−6
 Deactivating a channel, 4−16 ENQC% JSYS, 5−4, 6−6, 6−14
 Deadly embrace, 6−4, 6−5, 6−19 argument block, 6−15
 Deassigning terminal codes, 4−17 arguments, 6−14
 DEBRK% JSYS, 4−11 flag bits, 6−15

 Index−2

 ENQUEUE/DEQUEUE (ENQ/DEQ) File thawed access, 3−16
 facility, 5−4, 6−1 File unrestricted access, 3−16
 use of, 6−6 File write access, 3−16
 Entry vector, 8−16 Files, 3−1
 information, 8−19 Flag bits
 EP. macro, 8−6, 8−7 CLOSF%, 3−30
 ERCAL symbol, 1−4, 5−15 ENQC%, 6−15
 ERCALR symbol, 1−4 GTJFN% long form, 3−14
 ERCALS symbol, 1−4, 1−5 GTJFN% short form, 3−5
 ERJMP symbol, 1−4, 5−15 MRECV%, 7−10
 ERJMPR symbol, 1−4, 2−13 MSEND%, 7−8
 ERJMPS symbol, 1−4 SMAP%, 3−29
 Error returns Flags
 monitor calls, 1−4 packet descriptor block, 7−3
 ERSTR% JSYS, 1−5 Format
 Execute−only process, 8−19 extended instruction, 8−3
 Extended addressing, 8−1, 8−3 IPCF packet, 7−2
 examples, 8−7 <SYSTEM>INFO requests, 7−13
 using monitor calls with, 8−11 <SYSTEM>INFO responses, 7−14
 Extended format indirect word Format options
 (EFIW), 8−6 JFNS%, 3−34
 Extended instruction format, 8−3 NOUT%, 2−6
 Extended page number, 8−11 Functions
 DEQ%, 6−12
 −F− ENQ%, 6−6
 MUTIL%, 7−15
 FH%EPN, 8−11 PDVOP%, 8−20
 File RDTTY%, 2−9
 closing a, 3−30
 examples, 3−40 −G−
 opening a, 3−16
 pointer, 3−20 GET% JSYS, 5−11, 5−14
 reading from arguments, 5−11
 summary, 3−40 GETER% JSYS, 1−5
 referencing, 3−3 GFIWM macro, 8−6
 sharing, 3−2, 6−1 GFRKS% JSYS, 5−7
 writing to Global address, 8−1, 8−4, 8−6
 summary, 3−40 Global byte pointer, 8−10
 File access, 3−2, 3−16 Global stack, 8−10
 codes, 3−2 GNJFN% JSYS, 3−9, 3−36
 File append access, 3−16 bits returned, 3−37
 File frozen access, 3−16 GTJFN% JSYS, 3−3, 3−4
 File identifier, 3−2 arguments
 File page mapping, 3−26 long form, 3−12
 File pointer, 3−20 short form, 3−4
 File read access, 3−16 bits returned, 3−10
 File restricted access, 3−16 execution, 3−9, 3−14
 File section flag bits
 mapping, 8−12 long form, 3−14
 File section mapping, 3−28 short form, 3−5
 File specification, 3−3 long form, 3−4, 3−12
 standard, 3−3 argument block, 3−13

 Index−3

 GTJFN% JSYS (Cont.) Input
 short form, 3−4 terminal, 2−1
 examples, 3−11 Input designator
 summary, 3−15 primary, 2−2
 GTSTS% JSYS, 3−31 Instruction format
 bits returned, 3−31 extended, 8−3
 Instruction format indirect word
 −H− (IFIW), 8−5
 Instructions
 HALTF% JSYS, 2−8, 5−17 byte, 8−10
 example, 2−7 stack, 8−10
 Handle section, 8−17 Inter−process communication
 HFORK% JSYS, 5−17 facility
 receive quota, 7−1
 −I− send quota, 7−1
 utility functions, 7−15
 I/O monitor calls, 2−2 Inter−process communication
 IBP instruction, 2−2 facility (IPCF), 1−6, 5−4,
 Identifier 7−1
 file, 3−2 Interrupt, 4−1
 IFIW, 8−5, 8−20 generating, 4−10
 IIC% JSYS, 4−10, 5−4, 5−19 Interrupt channel assignments,
 arguments, 5−19 4−4
 ILDB instruction, 2−2 Interrupt channels
 Illegal instruction trap, 1−4 activating, 4−9
 Immediate instructions, 8−8 Interrupt conditions, 4−4
 Immediate mode Interrupt deferred mode
 terminal interrupt, 4−14 terminal, 4−14
 Indexing, 8−4, 8−20 Interrupt dismissing, 4−11
 example, 8−8 Interrupt immediate mode
 Indirection, 8−5, 8−20 terminal, 4−14
 example, 8−8 Interrupt processing, 4−10
 extended format indirect word Interrupt service routines, 4−6
 (EFIW), 8−6 Interrupt system
 instruction format indirect clearing, 4−17
 word (IFIW), 8−5 disabling, 4−16
 Inferior process, 1−6, 5−1 Interrupts
 characteristics, 5−8 terminal, 4−12
 communicating with superior, IPCF, 1−6, 5−4, 7−1
 5−10 packet data block, 7−2, 7−6,
 creating, 5−8, 5−10 7−12
 deleting, 5−20 address, 7−6
 parallel, 5−10 length, 7−6
 starting, 5−15 packet descriptor block, 7−2,
 status, 5−17 7−12
 termination, 5−16 flags, 7−3
 Information receive quota, 7−1
 about process, 8−17 send quota, 7−1
 entry vector, 8−19 utility functions, 7−15
 page−failure, 8−19 IPCF packet format, 7−2
 Initialization
 process, 2−8

 Index−4

 −J− JSYS (Cont.)
 OPENF%, 3−2, 3−16
 JFN, 3−1, 3−2 PBIN%, 2−8, 2−14
 JFNS% JSYS, 3−33 PBOUT%, 2−8, 2−14
 arguments, 3−33 PDVOP%, 5−11, 8−19
 format options, 3−34 PMAP%, 3−25, 3−26, 3−27, 3−28,
 Job, 1−7 5−11, 5−14, 5−15, 5−19,
 Job file number, 3−1, 3−2 8−12, 8−15
 Job structure, 1−6 PSOUT%, 2−3, 2−14
 exapmle, 1−7 RDTTY%, 2−5, 2−9, 2−12, 2−14
 JRA instruction, 8−10 RESET%, 2−8, 5−21, 7−5
 JRST instruction, 8−2, 8−9 RFSTS%, 5−4, 5−17
 JSA instruction, 8−10 RFSTS% long form, 5−17, 5−18
 JSP instruction, 8−10 RFSTS% short form, 5−17
 JSR instruction, 8−10 RIN%, 3−24
 JSYS, 1−2 RIR%, 4−15, 8−11
 AIC%, 4−9, 4−17, 5−4 ROUT%, 3−24
 arguments, 1−2, 1−3 RSMAP%, 8−17
 ATI%, 4−13 SAVE%, 5−11
 BIN%, 1−5, 3−21 SEVEC%, 8−16
 BOUT%, 3−21 SFORK%, 5−4, 5−15
 CFORK%, 5−4, 5−8, 5−10, 5−15, SFRKV%, 5−16
 5−19 SIN%, 3−22
 CIS%, 4−17 SIR%, 4−6, 4−11, 5−4, 8−11
 CLOSF%, 3−30 SKPIR%, 4−14
 DEBRK%, 4−11 SMAP%, 3−28, 8−12
 DEQ%, 6−2, 6−6, 6−12 SOUT%, 3−22, 3−23
 DIC%, 4−16 SPJFN%, 2−2
 DIR%, 4−16 SSAVE%, 5−11
 DTI%, 4−17 STIW%, 4−14
 EIR%, 4−9, 4−11, 4−17, 5−4 WFORK%, 5−4, 5−16
 ENQ%, 5−4, 6−2, 6−6, 6−17 XGTPW%, 8−19
 ENQC%, 5−4, 6−6, 6−14 XGVEC%, 8−19
 error returns, 1−4 XRIR%, 4−15, 8−12
 ERSTR%, 1−5 XRMAP%, 8−18
 GET%, 5−11, 5−14 XSFRK%, 5−16, 8−16
 GETER%, 1−5 XSIR%, 4−6, 4−11, 4−17, 8−12
 GFRKS%, 5−7 XSVEC%, 8−16
 GNJFN%, 3−9, 3−36 JUMP instruction symbols, 1−4
 GTJFN%, 3−3, 3−4, 3−9 ERCAL, 1−4, 5−15
 GTSTS%, 3−31 ERCALR, 1−4
 HALTF%, 2−8, 5−17 ERCALS, 1−4, 1−5
 HFORK%, 5−17 ERJMP, 1−4, 5−15
 I/O, 2−2 ERJMPR, 1−4, 2−13
 IIC%, 4−10, 5−4, 5−19 ERJMPS, 1−4
 JFNS%, 3−33 JUMP instructions, 1−4
 KFORK%, 5−4, 5−20
 MRECV%, 5−4, 7−7, 7−9
 MSEND%, 5−4, 7−7, 7−12
 MUTIL%, 5−4, 7−15 −K−
 NIN%, 2−4, 2−13, 2−14
 NOUT%, 2−5, 2−14 KFORK% JSYS, 5−4, 5−20

 Index−5

 −L− MRECV% JSYS (Cont.)
 execution, 7−11
 Level number flagbits, 7−10
 resource, 6−4 flags returned, 7−11
 LEVTAB, 4−8 MSEND% JSYS, 5−4, 7−7, 7−12
 LFIWM macro, 8−6 arguments, 7−7
 LINK, 8−19 execution, 7−9
 Literals, 2−2 flag bits, 7−8
 Local address, 8−4, 8−6 Multiple processes, 5−2
 Local byte pointer, 8−10 Multisection programs, 8−22
 Lock MUTIL% JSYS, 5−4, 7−15
 resource, 6−1 arguments, 7−15
 Long form GTJFN%, 3−12 execution, 7−20
 LUUO instructions, 8−9 functions, 7−15

 −M− −N−

 MACSYM, 1−3 NIN% JSYS, 2−4, 2−13, 2−14
 MACSYM macros, 1−3 example, 2−7
 EJSERR, 1−5 NOUT% JSYS, 2−5, 2−14
 EJSHLT, 1−5 example, 2−6, 2−7
 EP., 8−7 format options, 2−6
 indirection, 8−6 Number
 EP., 8−6 reading a, 2−4
 GFIWM, 8−6 writing a, 2−5
 LFIWM, 8−6
 TMSG, 2−4 −O−
 Mapping, 8−12
 file page, 3−26 One−word global byte pointer, 2−2,
 file section, 3−28 8−10, 8−11
 file sections to a process, OPENF% JSYS, 3−2, 3−16, 3−27
 8−12 access bits, 3−17
 memory, 8−12 arguments, 3−16
 page, 3−24, 5−14 examples, 3−19
 process page, 3−27 Opening a file, 3−16
 process section, 8−13 Operation code
 sections, 8−12 monitor calls, 1−2
 Memory, 8−2 Output
 Memory sharing, 5−5 terminal, 2−1
 Messages Output designator
 receiving process, 7−7 primary, 2−2
 sending process, 7−7 Ownership, 6−2, 6−17
 Monitor calls, 1−2 exclusive, 6−2, 6−17
 arguments, 1−2, 1−3 shared, 6−1, 6−2, 6−17
 calling sequence, 1−3
 error returns, 1−4 −P−
 for processes, 5−7
 I/O, 2−2 Packet, 7−1, 7−2
 operation code, 1−2 receiving a, 7−9
 MONSYM, 1−2, 2−3 sending a, 7−7
 MRECV% JSYS, 5−4, 7−7, 7−9 Packet data block, 7−2, 7−6, 7−12
 arguments, 7−9 address, 7−6

 Index−6

 Packet data block (Cont.) Priority level table (LEVTAB),
 length, 7−6 4−8
 Packet descriptor block, 7−2, .PRIOU symbol, 2−2, 2−9, 2−14,
 7−12 3−20
 flags, 7−3 Process, 1−6, 1−7
 Packet format address space, 1−6, 5−11
 IPCF, 7−2 capabilities, 5−11
 Page, 3−1 communication, 1−6, 5−3, 5−19
 Page access, 5−5 control, 1−6, 5−4
 Page mapping, 5−14 deleting inferior, 5−20
 file, 3−25 examples, 5−21
 Page sharing, 5−5 execute−only, 8−19
 Page−failure information, 8−19 handle, 5−5, 5−10
 Panic channel, 4−5, 4−10, 4−11 identifiers, 5−5
 Parallel inferior processes, 5−10 inferior, 1−6, 5−1
 PBIN% JSYS, 2−8, 2−14 information about, 8−17
 PBOUT% JSYS, 2−8, 2−14 JSYSs for, 5−7
 PC, 5−1, 8−1, 8−2, 8−9 multiple, 5−2
 address, 8−9 parallel, 5−1
 address fields, 8−2 starting in any section, 8−16
 PDV, 8−19 starting inferior, 5−15
 names, 8−20 status word, 5−17
 rules, 8−20 structure, 1−6, 5−1
 PDVA, 8−19 superior, 1−6, 5−1
 manipulating, 8−20 terminating inferior, 5−16
 PDVOP% JSYS, 5−11, 8−19 use of resources, 6−5
 functions, 8−20 Process communication, 1−6, 5−3,
 PID, 7−1, 7−5, 7−11 5−5, 5−19
 PM%EPN, 8−11 sharing pages, 5−19
 PMAP% JSYS, 3−25, 3−27, 3−28, software interrupt, 5−4, 5−19
 5−11, 5−14, 5−15, 5−19, 8−12, Process control, 5−4
 8−15 Process handle, 5−5
 access bits, 3−26 Process ID (PID), 7−1, 7−5, 7−11
 arguments, 3−26, 3−28, 5−14, Process identifiers, 5−5
 8−15 Process initialization, 2−8
 POINT pseudo−op, 2−1 Process mapping, 3−27
 Pointer Process messages
 file, 3−20 receiving, 7−7
 Pooled resources, 6−11 sending, 7−7
 POP instruction, 8−10 Process relationships, 5−1
 POPJ instruction, 8−9, 8−10 Process section, 3−28
 .PRIIN symbol, 2−2, 2−9, 2−14, unmapping, 8−15
 3−20 Process status word, 5−17
 Primary input designator (.PRIIN), Process structure, 1−6, 5−1
 2−2, 3−20 Process unmapping, 3−28
 Primary output designator Program counter, 8−2
 (.PRIOU), 2−2, 3−20 address fields, 8−2
 Printing a string, 2−3 Program counter (PC), 5−1, 8−1,
 Priority level 8−9
 interrupt, 4−11 address, 8−9
 software interrupt, 4−4 Program data vector (PDV), 8−19
 address (PDVA), 8−19

 Index−7

 Program data vector (PDV) (Cont.) Resource (Cont.)
 manipulating PDVAs, 8−20 use by process, 6−5
 names, 8−20 Resource lock, 6−1
 rules, 8−20 Resource name, 6−4
 program version number, 8−21 Resource ownership, 6−2
 Programs RFSTS% JSYS, 5−4, 5−17
 multisection, 8−22 long form, 5−17, 5−18
 Protection status−return block, 5−18
 resource, 6−4 process status word, 5−17
 Pseudo−ops short form, 5−17
 ASCIZ, 1−6 RIN% JSYS, 3−24
 POINT, 2−1 RIR% JSYS, 4−15, 8−11
 PSOUT% JSYS, 2−3, 2−14 example, 4−15
 example, 2−7 ROUT% JSYS, 3−24
 PUSH instruction, 8−10 RSMAP% JSYS, 8−17
 PUSHJ instruction, 8−2, 8−9, 8−10 information returned, 8−17

 −Q−

 Queue, 6−1, 6−2 −S−
 Quota, 7−1
 receive, 7−1 SAVE% JSYS, 5−11
 send, 7−1 Section
 changing, 8−2
 −R− creating, 8−14
 nonzero, 8−14, 8−16
 RDTTY% JSYS, 2−5, 2−9, 2−12, 2−14 zero, 8−3, 8−11
 arguments, 2−9 Section handle, 8−17
 control bits, 2−10 Section mapping, 8−12
 editing functions, 2−9 file, 3−28
 example, 2−13 file to process, 8−12
 Reading a byte, 2−8 process, 8−13
 Reading a number, 2−4 Sections, 8−2
 Reading a string, 2−9 Send quota, 7−1
 Reading from a file Sending a packet, 7−7
 summary, 3−40 SEVEC% JSYS, 8−16
 Receive quota, 7−1 SFM instruction, 8−9
 Receiving a packet, 7−9 SFORK% JSYS, 5−4, 5−15
 Referencing a file, 3−3 arguments, 5−15
 Releasing a resource, 6−12 SFRKV% JSYS, 5−16
 RESET% JSYS, 2−8, 5−21, 7−5 Sharer groups, 6−17
 example, 2−7 use of, 6−17, 6−18
 Resource, 6−1 Sharing files, 3−2, 6−1
 level number, 6−4 Sharing pages, 5−19
 obtaining information about, Sharing resources, 6−1, 6−17
 6−14 Short form GTJFN%, 3−4
 ownership, 6−2, 6−17 examples, 3−11
 pooled, 6−11 SIN% JSYS, 3−22
 protection, 6−4 arguments, 3−22
 releasing a, 6−12 SIR% JSYS, 4−6, 4−11, 5−4, 8−11
 requesting use of, 6−6 arguments, 4−6
 sharing, 6−1, 6−17 SKPIR% JSYS, 4−14

 Index−8

 SMAP% JSYS, 3−28, 8−12 Strings (Cont.)
 arguments, 3−29, 8−13, 8−14, text, 2−1
 8−15 transferring, 3−22
 flag bits, 3−29 example, 3−23
 Software interrupt, 1−6, 4−10, Structure
 5−19 process, 1−6
 channel assignments, 4−4 Superior process, 1−6, 5−1
 channels and priorities, 4−4 communicating with inferior,
 disabling, 4−16 5−10
 dismissing, 4−11 <SYSTEM>INFO, 7−1, 7−5, 7−6, 7−7,
 example, 4−18 7−9, 7−12
 panic channel, 4−5, 4−10, 4−11 functions and arguments, 7−13
 priority level, 4−11 requests, 7−12
 priority levels, 4−4 format, 7−13
 process communication, 5−4 responses, 7−14
 processing, 4−10 <SYSTEM>INFO responses, 7−15
 service routines, 4−6
 tables, 4−6 −T−
 Software interrupt system, 1−6,
 4−1, 5−16 Table
 enabling, 4−9 channel (CHNTAB), 4−7
 operational sequence, 4−2 priority level (LEVTAB), 4−8
 summary, 4−17 software interrupt, 4−6
 Source designator, 3−20 Terminal
 SOUT% JSYS, 3−22, 3−23 input, 2−1
 arguments, 3−23 output, 2−1
 SPJFN% JSYS, 2−2 Terminal codes
 SSAVE% JSYS, 5−11 deassigning, 4−17
 Stack Terminal interrupts, 4−12
 address, 8−10 codes, 4−12
 global, 8−10 deferred mode, 4−14
 pointer, 8−10 generating, 4−13
 register, 8−10 immediate mode, 4−14
 Stack instructions, 8−10 Terminating inferior process,
 ADJSP, 8−10 5−16
 POP, 8−10 Text strings, 2−1
 POPJ, 8−10 TMSG macro, 2−4
 PUSH, 8−10 example, 2−7
 PUSHJ, 8−10 Transferring bytes, 3−21
 Standard file specification, 3−3 Transferring data, 3−19
 Starting a process, 8−16 Transferring strings, 3−22
 Starting inferior process, 5−15 example, 3−23
 Status word Trap
 process, 5−17 illegal instruction, 1−4
 Status−return block, 5−18 Two−word global byte pointer, 2−2,
 STIW% JSYS, 4−14 8−10
 String
 printing a, 2−3 −U−
 reading a, 2−9
 Strings Universal device designator, 8−11
 ASCII, 2−1, 3−21 Unmapping
 ASCIZ, 2−1, 3−21 process page, 3−28

 Index−9

 Unmapping (Cont.) XCT instruction, 8−9
 process section, 8−15 XGTPW% JSYS, 8−19
 arguments, 8−19
 −V− XGVEC% JSYS, 8−19
 XHLLI instruction, 8−8, 8−9
 Vector XJEN instruction, 8−9
 entry, 8−16 XJRST instruction, 8−2
 Virtual address space, 8−1 XJRSTF instruction, 8−2, 8−9
 Virtual space, 1−6 XMOVEI instruction, 8−8, 8−20
 XPCW instruction, 8−9
 −W− XRIR% JSYS, 4−15, 8−12
 arguments, 4−15
 WFORK% JSYS, 5−4, 5−16 XRMAP% JSYS, 8−18
 Writing a byte, 2−8 arguments, 8−18
 Writing a number, 2−5 XSFRK% JSYS, 5−16, 8−16
 Writing to a file arguments, 8−16
 summary, 3−40 XSIR% JSYS, 4−6, 4−11, 4−17, 8−12
 arguments, 4−7
 −X− XSVEC% JSYS, 8−16
 arguments, 8−16
 XBLT instruction, 8−9

 Index−10

