
 TOPS−20
 User Utilities Guide

| Electronically Distributed

 This manual describes utility programs available
 to both privileged and nonprivileged users of the
 TOPS−20 operating system.

 Operating System: TOPS−20 (KS/KL Model A) V4.1
 TOPS−20 (KL Model B) V6.1

 Software: MAIL Version 6
 RDMAIL Version 6
 FILCOM Version 22
 CREF Version 53B
 MAKLIB Version 2B
 DUMPER Version 5
 PLEASE Version 5

 digital equipment corporation maynard, massachusetts

| TOPS−20 Update Tape No. 04, November 1990

 First Printing, January 1980
 Updated, January 1982
 Updated, December 1982
 Updated, September 1985
| Updated, November 1990

 The information in this document is subject to change without notice
 and should not be construed as a commitment by Digital Equipment
 Corporation. Digital Equipment Corporation assumes no responsibility
 for any errors that may appear in this document.

 The software described in this document is furnished under a license
 and may only be used or copied in accordance with the terms of such
 license.

 No responsibility is assumed for the use or reliability of software on
 equipment that is not supplied by DIGITAL or its affiliated companies.

| Copyright C 1980, 1982, 1985, 1990 Digital Equipment Corporation

 All Rights Reserved.

 The following are trademarks of Digital Equipment Corporation:

 CI DECtape LA50 SITGO−10
 DDCMP DECUS LN01 TOPS−10
 DEC DECwriter LN03 TOPS−20
 DECmail DELNI MASSBUS TOPS−20AN
 DECnet DELUA PDP UNIBUS
 DECnet−VAX HSC PDP−11/24 UETP
 DECserver HSC−50 PrintServer VAX
 DECserver 100 KA10 PrintServer 40 VAX/VMS
 DECserver 200 KI Q−bus VT50
 DECsystem−10 KL10 ReGIS
 DECSYSTEM−20 KS10 RSX d i g i t a l

 CONTENTS

 PREFACE

 CHAPTER 1 INTRODUCTION TO TOPS−20 USER UTILITIES

 1.1 INVOKING THE UTILITIES 1−1
 1.2 TYPING FILE SPECIFICATIONS 1−2

 CHAPTER 2 THE MAIL PROGRAM

 2.1 INTRODUCTION 2−1
 2.2 RUNNING MAIL 2−1
 2.3 OPTIONS TO THE MAIL PROCEDURE 2−4
 2.4 MAIL MESSAGES 2−7
 2.5 TECHNICAL NOTES 2−10

 CHAPTER 3 THE RDMAIL PROGRAM

 3.1 INTRODUCTION 3−1
 3.2 RUNNING RDMAIL 3−2
 3.2.1 Reading Mail Using RDMAIL Switches 3−4
 3.3 RDMAIL MESSAGES 3−8

 CHAPTER 4 THE FILCOM PROGRAM

 4.1 INTRODUCTION 4−1
 4.2 RUNNING FILCOM 4−1
 4.2.1 Comparing ASCII Files 4−3
 4.2.2 Comparing Binary Files 4−9
 4.3 FILCOM SWITCHES 4−12
 4.4 FILCOM MESSAGES 4−14

 CHAPTER 5 THE CREF PROGRAM

 5.1 INTRODUCTION 5−1
 5.2 RUNNING CREF 5−1
 5.2.1 Creating .CRF Files with COMPILE 5−1
 5.2.2 Producing Cross−Reference Listings 5−2
 5.3 CREF EXAMPLES 5−6
 5.4 CREF MESSAGES 5−10
 5.5 TECHNICAL NOTES 5−15

 iii

 CHAPTER 6 THE MAKLIB PROGRAM

 6.1 INTRODUCTION 6−1
 6.2 RUNNING MAKLIB 6−3
 6.2.1 Running MAKLIB to Obtain Information About
 Libraries 6−4
 6.2.2 Running MAKLIB to Manipulate Libraries 6−7
 6.2.3 Running MAKLIB to Modify Libraries 6−18
 6.2.4 Running MAKLIB to Edit Libraries 6−19
 6.3 MAKLIB SWITCH OPTIONS 6−26
 6.4 MAKLIB MESSAGES 6−27
 6.5 TECHNICAL NOTES 6−44
 6.5.1 Format of TRACE Block Data (REL Block Type
 1060) . 6−44
 6.5.2 Format of Code Insertion 6−45

 CHAPTER 7 THE DUMPER PROGRAM

 7.1 INTRODUCTION 7−1
 7.2 FEATURES . 7−2
 7.3 USING TAPES WITH AND WITHOUT TAPE DRIVE ALLOCATION 7−3
 7.4 RUNNING DUMPER 7−7
 7.5 THE NONPRIVILEGED USER 7−7
 7.5.1 Setting the Status of Operation 7−8
 7.5.2 Positioning the Tape 7−20
 7.5.3 Interacting with Tape Files 7−23
 7.5.4 Marking Files to be Archived 7−33
 7.6 THE PRIVILEGED USER 7−33
 7.6.1 Backing Up System Files and/or Other Users’
 Files . 7−35
 7.6.2 Restoring Files and Directories from System
 Backup Tapes 7−37
 7.6.3 Archiving Marked Files 7−38
 7.6.4 Migrating Files 7−39
 7.6.5 Retrieving or Restoring Archived and Migrated
 Files . 7−40
 7.7 DUMPER COMMANDS 7−42
 7.8 DUMPER MESSAGES 7−50

 CHAPTER 8 PLEASE

 8.1 INTRODUCTION 8−1
 8.2 SWITCHES USED WITH PLEASE 8−1
 8.3 MESSAGE TERMINATORS USED WITH PLEASE 8−1
 8.4 RUNNING PLEASE 8−2
 8.5 PLEASE MESSAGES 8−3

 INDEX

 iv

 FIGURES

 6−1 Figure Generation of an .EXE File 6−1
 6−2 Generation of a Library 6−2
 6−3 Function of /APPEND 6−8
 6−4 Function of /DELETE 6−10
 6−5 Function of /EXTRACT 6−12
 6−6 One Function of /INSERT 6−14
 6−7 One Function of /INSERT 6−15
 6−8 Function of /REPLACE 6−17
 6−9 Order of Pseudo−ops in a .FIX File 6−23

 TABLES

 3−1 RDMAIL Switches 3−4
 4−1 Special File Types Recognized by FILCOM 4−2
 4−2 FILCOM Switches 4−13
 4−3 Reasons for File Access Errors 4−17
 5−1 CREF Switch Options 5−4
 5−2 Reasons for File Access Errors 5−14
 5−3 Error Status Codes 5−15
 5−4 Beginning and Ending Control Characters 5−16
 5−5 Symbol−Definition Control Characters 5−17
 5−6 Character−Count−Definition Characters 5−19
 6−1 MAKLIB Switches 6−26
 7−1 Status−Setting Commands 7−8
 7−2 Tape−Positioning Commands 7−21
 7−3 Action Commands 7−24
 7−4 File Descriptor Block (FDB) Entries Checked by
 DUMPER . 7−29

 vi

 PREFACE

 The TOPS−20 User Utilities Guide is intended for both the privileged
 and the nonprivileged user who needs information on utility programs
 that run on the TOPS−20 operating system. Before you use this manual,
 you should be familiar with the information contained in Getting
 Started with TOPS−20, the TOPS−20 User’s Guide, and the TOPS−20
 Commands Reference Manual.

 This document provides detailed information on the following TOPS−20
 utility programs: MAIL, RDMAIL, FILCOM, CREF, MAKLIB, DUMPER, and
 PLEASE. The manual contains tutorial and reference material in each
 chapter to accommodate both the novice and the experienced user.

 The following conventions are used throughout the TOPS−20 User
 Utilities Guide:

 <RET> Indicates when you should press the RETURN key (on
 some terminals the key labeled CR)

 <ESC> Indicates when you should press the ESC key (on some
 terminals the key labeled ALT)

 Indicates when you should press the DELETE key

 <CTRL/x> Indicates when you should hold down the CTRL key and
 at the same time type the letter x

 file spec Indicates a file specification

| underlined text Indicates anything you type or are expected to type
| on your terminal.

 vii

 The current version of the following TOPS−20 documents are referenced
 in this manual:

 Getting Started With TOPS−20

 TOPS−20 User’s Guide

 TOPS−20 Commands Reference Manual

 TOPS−20 Operator’s Guide

 TOPS−20 Monitor Calls Reference Manual

 TOPS−20 LINK Reference Manual

 TOPS−20 MACRO ASSEMBLER Reference Manual

 TOPS−20 System Manager’s Guide

 TOPS−10/TOPS−20 Batch Reference Manual

 8

 CHAPTER 1

 INTRODUCTION TO TOPS−20 USER UTILITIES

 This manual describes utility programs available to any user of the
 TOPS−20 operating system.

 The following utility programs are covered in this manual:

 o The MAIL program, which allows you to send messages to other
 users of the system (Chapter 2)

 o The RDMAIL program, which allows you to read messages sent to
 you via the MAIL program (Chapter 3)

 o The FILCOM program, which allows you to compare two ASCII
 files or two binary files (Chapter 4)

 o The CREF program, which produces cross−reference listings of
 symbols used in MACRO, FORTRAN, and ALGOL programs (Chapter
 5)

 o The MAKLIB program, which performs various functions on
 libraries of relocatable object modules (Chapter 6)

 o The DUMPER program, which allows you to save files and
 directories on tape, and restore these files and directories
 to disk (Chapter 7)

 o The PLEASE program, which allows you to communicate with the
 system operator (Chapter 8).

 1.1 INVOKING THE UTILITIES

 To invoke these utilities, you should be familiar with the TOPS−20
 log−in procedure. Type the name of the program after the TOPS−20
 prompt @ and press RETURN. The utility then prompts you for input.
 Thus, the general format is:

 1−1

 INTRODUCTION TO TOPS−20 USER UTILITIES

 @ Utility Name<RET>
 Utility prompt

 1.2 TYPING FILE SPECIFICATIONS

 Many of the utilities accept file specifications as arguments. There
 are two forms of file specifications. The MAIL, RDMAIL, and DUMPER
 utilities accept file specifications in the following format:

 dev:<dir>name.typ.gen;att...;att

 where:

 dev: Indicates a device name, a file structure name,
 or a defined logical name

 <dir> Indicates a directory name

 name Indicates the filename of a particular file in
 the directory

 .typ Indicates a file type that helps identify the
 contents of the file

 .gen Indicates a generation number that shows the
 number of times a file has been changed

 ;att Indicates a file attribute such as a file
 protection or an account string.

 If you omit the dev: field of the file specification, the system
 assumes that you mean your connected structure. When you omit the
 <dir> field of the file specification, the system assumes that you
 mean your connected directory. When you omit the .gen field of the
 file specification, the system assumes that you mean the highest
 generation (largest generation number) for source files. For
 Destination files, the system assumes that you mean the highest
 generation plus one.

 You can use recognition on file specifications in this format. You
 can use wildcards only in the DUMPER program. (Refer to Chapter 7.)
 For more information on file specifications, refer to the TOPS−20
 User’s Guide.

 The FILCOM, CREF, and MAKLIB utilities accept file specifications in a
 slightly different format as follows:

 dev:name.typ[PPN]

 1−2

 INTRODUCTION TO TOPS−20 USER UTILITIES

 In this form of a file specification, filenames are restricted to six
 characters. File types are restricted to three characters. You
 cannot use recognition, and file generation numbers are not allowed.
 Therefore, the highest generation of a file is always used. You can
 use wildcards only in the MAKLIB program. (Refer to Chapter 6.)

 The PPN is a project−programmer number, which you use instead of a
 directory name. To find out the PPN associated with a specific
 directory, give the TRANSLATE command. For example, if you wish to
 find out the PPN associated with the directory <ADLEY> on PS: you do
 the following:

 @ TRANSLATE <DIRECTORY> PS:<ADLEY><RET>
 PS:<ADLEY> <IS> PS:[4,305]
 @

 You can avoid using PPN’s in file specifications by defining a logical
 name that represents the directory you wish to access. Do the
 following procedure:

 1. Give the DEFINE command to define a logical name as the
 directory.

 2. Use the logical name in place of the device name and the PPN
 when you type the file specification.

 The following is an example of defining a logical name for a directory
 and using it with the FILCOM program:

 @ DEFINE (LOGICAL NAME) ADL: (AS) <ADLEY><RET>
 @ FILCOM<RET>
 * TTY:=ADL:TEST.MAC,ADL:TEST2.MAC<RET>

 You can also define logical names to reference long filenames or
 particular file generation numbers. This is especially useful with
 the FILCOM program when you wish to compare two similar files with
 different generation numbers. For example:

 @ DEFINE (LOGICAL NAME) A: (AS) FOO.BAR.3<RET>
 @ DEFINE (LOGICAL NAME) B: (AS) FOO.BAR.4<RET>
 @ FILCOM<RET>
 * TTY:=A:,B:<RET>

 1−3
 2−1

 CHAPTER 2

 THE MAIL PROGRAM

 2.1 INTRODUCTION

 You can use the MAIL program to send messages to other users of the
 system. You can send mail to a single user or to a group of users who
 are either logged in or not logged in.

 2.2 RUNNING MAIL

 To run MAIL, type MAIL after the TOPS−20 prompt @ and press the RETURN
 key. The program responds with the To: prompt as follows:

 @ MAIL<RET>
 To:

 Type the name of the user to whom you are sending the message, and
 press RETURN.

 If you are sending a message to a group of users, type the names,
 separating them with commas, and press RETURN. For example:

 To: Adley,Sartini,McElmoyle<RET>

 The program then prompts:

 CC:

 Now list any secondary recipients of your message. Type the name or
 names (separated by commas) and press RETURN. If you do not want to
 send a copy to others, simply press RETURN after the CC: prompt.

 If you type an invalid (nonexistent) user name, the program responds
 with:

 ?Invalid user name

 2−1

 THE MAIL PROGRAM

 MAIL returns with either the To: prompt or the CC: prompt. Type
 CTRL/H after either prompt. This retrieves only the names up to the
 error, and you can type any additional valid names.

 You cannot send more than one copy of a mail message to a user. If
 you type a user name more than once after either the To: or the CC:
 prompt, the program prints a warning message. For example:

 To: Adley<RET>
 CC: Adley<RET>
 %Duplicate name purged − ADLEY

 The MAIL program continues after it prints the warning message;
 however, the program removes the duplicate name from the list of
 users.

 The program then prompts with:

 Subject:

 Type a description of the message and press RETURN. For example:

 Subject: Location of weekly writers meeting<RET>

 If your description exceeds one line, you cannot continue the
 description on a second line; you must continue typing when you reach
 the end of a line. The system automatically continues your
 description on the second line by responding with a carriage return
 line feed sequence. When you have completed typing your description,
 press RETURN. For example:

 Subject: Location of weekly meeting and change in software
 release date.<RET>

 NOTE

 The system may interpret a character in the Subject:
 line (such as a question mark) as a special character.
 To avoid this, precede the character with a CTRL/V.

 MAIL then prompts with:

 Message (Terminate with ESC or CTRL/Z):

 and waits for you to enter your message. Once you have terminated
 your message by typing ESC or CTRL/Z, the program informs you that it
 has processed your message:

 Processing mail...

 No errors.

 2−2

 THE MAIL PROGRAM

 −DONE−

 and returns you to TOPS−20 command level.

 If you send a message to a user who is logged in and accepting links
 and system messages, that user is informed immediately as follows:

 [You have a message from SENDER]

 If you send a message to a user who is not logged in, that user is
 informed the next time he logs in:

 @ LOGIN (USER) ADLEY (PASSWORD) (ACCOUNT) 341<RET>
 Job 54 on TTY33 23−Apr−79 09:46:05
 You have a message
 @

 If you make an error in sending mail to a user, you receive one of the
 following messages:

 [USER NAME] not sent BECAUSE:
 Invalid directory number

 or

 Invalid simultaneous access

 or

 No such file type (or some other reason related to why the
 recipient’s MAIL.TXT file could not be found)

 or

 [USER NAME] not sent BECAUSE:
 Disk quota exceeded

 NOTE

 For additional information on these error messages,
 refer to Section 2.4, MAIL Messages.

 You can use a recovery procedure to resend mail after receiving some
 of the MAIL error messages. This recovery is particularly helpful
 when your message is long and you do not want to retype it. The
 procedure is as follows:

 1. Undelete the MAIL.CPY file in your logged−in directory. This
 file contains the message that could not be sent.

 2−3

 THE MAIL PROGRAM

 2. Rename the MAIL.CPY file; for example, ERROR.TXT. This
 prevents MAIL from deleting the file a second time during
 message processing.

 3. After the TOPS−20 prompt @, type:

 @ GET SYS:MAIL<RET>

 4. The system gives the TOPS−20 prompt once again, and you type:

 @ REENTER<RET>

 5. After you press RETURN, the system prompts:

 File name of message file:

 Now type the new file spec of the renamed MAIL.CPY file, and
 press RETURN:

 File name of message file: (file spec)<RET>

 The MAIL program now proceeds as though you had just typed
 ESC or CTRL/Z after the message.

 2.3 OPTIONS TO THE MAIL PROCEDURE

 The procedure in Section 2.2 describes the most common use of MAIL.
 Options to this basic procedure are as follows:

 1. You can use the TALK command as an alternative to the MAIL
 program to communicate with a user who is logged in. (For
 more information on the TALK command, refer to the TOPS−20
 Commands Reference Manual.)

 2. You can use the INFORMATION MAIL command to check on the
 status of new mail, either your own or that of other users.
 (For more information on this command, see the TOPS−20
 Commands Reference Manual.)

 3. If you send mail often to a group of users, you can create a
 file containing these names. Then, instead of typing all the
 names each time you send a message, you can type the
 filename, preceded by an @, after the To: prompt or the CC:
 prompt. For example, if the file NAME.FIL.1 contains the
 user names ADLEY, CRUGNOLA, LYONS, type:

 To: @NAME.FIL.1<RET>

 The filename can also be combined with other user names
 following the prompt. However, the file must follow the list
 of additional user names. For example:

 2−4

 THE MAIL PROGRAM

 To: Sartini,McElmoyle,@NAME.FIL.1<RET>

 4. You can use the contents of an indirect file as your message
 or Subject: line text. The indirect file you use in the
 Subject: line can contain only one line. You cannot type
 any additional text on this line with the indirect file. To
 send the contents of an indirect file as mail, type an @
 followed by the name of the file, and press RETURN. You
 cannot type any additional text before or after the indirect
 file. For example:

 @ MAIL<RET>
 To: Crugnola<RET>
 CC: <RET>
 Subject: Macro files<RET>
 Message (Terminate with ESC or CTRL/Z):

 @ MACRO.CMD.1<RET>

 Processing mail...

 No errors.
 −DONE−
 @

 In this case, you do not terminate the message with ESC or
 CTRL/Z, because you are using an indirect file as your
 message. However, you terminate the file spec by pressing
 RETURN. If you terminate your message with CTRL/Z, MAIL
 responds with:

 @ MACRO.CMD.1 (CTRL/Z)
 ?Not confirmed

 To recover, type CTRL/H immediately to retrieve the indirect
 file spec. Then, press RETURN.

 5. Normally, you send mail to other users. However, you can
 also send mail to any non−files−only directory on PS:. The
 most common non−files−only directories are PS:<REMARKS> and
 PS:<SYSTEM>.

 PS:<REMARKS> can be used for recording information and
 problems that the system staff should be aware of. For
 example, use PS:<REMARKS> to record any system difficulties,
 hardware/software problems, or other related items. To send
 a message to this directory, type REMARKS after the To:
 prompt. For example:

 2−5

 THE MAIL PROGRAM

 @ MAIL<RET>
 To: REMARKS<RET>
 CC: <RET>
 Subject: Supplies<RET>
 Message (Terminate with ESC or CTRL/Z):

 Terminals in Room 216 need additional boxes of paper, size
 9 7/8 x 11. <ESC>

 Processing mail...

 No errors.
 −DONE−
 @

 Generally, to send messages to all users of the system, you
 enable your WHEEL or OPERATOR capabilities and run MAIL.
 These messages are called Messages−of−the−Day. You can also
 send Messages−of−the−Day by connecting to the directory
 PS:<SYSTEM>. However, most systems are not set up to allow
 users to connect to this directory. The following example
 shows an enabled user running MAIL to send a
 Message−of−the−Day.

 $ MAIL<RET>
 To: SYSTEM<RET>
 CC: <RET>
 Subject: System shut−down<RET>
 Message (Terminate with ESC or CTRL/Z):

 The system will be shut down tomorrow at 5 p.m. for
 preventive maintenance. <ESC>

 Processing mail...

 No errors.
 −DONE−
 $

 If you attempt to send mail to PS:<SYSTEM> and do not enable
 WHEEL or OPERATOR capabilities, MAIL prints the following
 error message:

 Processing mail...SYSTEM not sent BECAUSE:
 WHEEL or OPERATOR capability required

 To resend the mail, you can follow the recovery procedure
 described in Section 2.2 after you enable WHEEL or OPERATOR
 capabilities.

 2−6

 THE MAIL PROGRAM

 When you send a message to PS:<SYSTEM>, the following message
 appears on all terminals that are receiving system messages:

 [New Message−of−the−Day available]

 Users not logged in to the system at the time you send the
 message automatically receive new Messages−of−the−Day the
 next time they log in.

 6. You can use MAIL to inform yourself that your batch job is
 completed. Place commands to MAIL in your control file as
 shown in the following example. Note that a period is used
 as the reply to the To: prompt. This character replaces a
 user name and informs MAIL that the message is to be sent to
 you. For example:

 @ CREATE (FILE) TEST.CTL<RET>
 INPUT: TEST.CTL<RET>
 00100 @FILCOM<RET>
 00200 *TEST.FOR=DIFFER.FOR,ADDEM.FOR/A<RET>
 00300 @PRINT TEST.FOR<RET>
 00400 @MAIL<RET>
 00500 *.<RET>
 00600 *<RET>
 00700 *BATCH JOB IS DONE<RET>
 00800 *^Z
 00900 <ESC>
 * E
 @

 NOTE

 Use of a period in place of your user name when you
 run MAIL is not a feature unique to batch. You can
 use it any time in the MAIL program when you wish to
 specify yourself as a recipient of mail.

 2.4 MAIL MESSAGES

 The most common MAIL messages, their descriptions, and suggested user
 responses follow. Fatal errors are preceded by a question mark (?).
 Warning messages are preceded by a percent sign (%).

 %Duplicate name purged − [USER NAME]

 Description: You attempted to send a user more than one copy of
 a mail message.

 Suggested User Response: None. MAIL continues automatically,
 and eliminates the duplicate name.

 2−7

 THE MAIL PROGRAM

 ?Invalid user name

 Description: You typed an invalid (nonexistent) user name as a
 recipient of your message.

 Suggested User Response: Type CTRL/H after either the To:
 prompt or the CC: prompt to retrieve only the names up to the
 error. Type any additional valid names.

 ?MAIL.CPY Failure
 Entire file structure full

 Description: The public structure (PS:) is full, and therefore
 MAIL cannot operate. You receive this message immediately after
 invoking the program.

 Suggested User Response: Delete and expunge some files from your
 logged−in directory, or wait until some space is freed.

 ?MAILER is not running. Messages not sent.

 Description: Your message was not sent because the MAILER
 program is not functioning.

 Suggested User Response: Send a message to the operator with the
 PLEASE program (refer to Chapter 8) to report that MAILER is not
 functioning. Then, once MAILER is functioning, use the recovery
 procedure described in Section 2.2 to resend your message.

 ?Not confirmed

 Description: You did not press RETURN immediately after typing
 an indirect file spec.

 Suggested User Response: TYPE CTRL/H immediately after the error
 message to retrieve the indirect file spec. Then, press RETURN
 to confirm the indirect file spec.

 ?Processing errors occurred. No mail sent.

 Description: There is a problem with you MAIL.CPY file; either
 MAILER cannot find it, or the file is not in correct format.

 Suggested User Response: Check to see if there is another
 program updating MAIL.CPY. If not, contact your Software
 Specialist or send a Software Performance Report (SPR) to
 DIGITAL.

 SYSTEM not sent BECAUSE:
 WHEEL or OPERATOR capability required

 Description: You attempted to send mail to PS:<SYSTEM> and did
 not enable WHEEL or OPERATOR capabilities.

 2−8

 THE MAIL PROGRAM

 Suggested User Response: You must enable WHEEL or OPERATOR
 capabilities before sending mail to PS:<SYSTEM>. To resend the
 mail, you can follow the recovery procedure described in Section
 2.2 after you enable WHEEL or OPERATOR capabilities.

 %Too many user names. 100 is maximum.

 Description: You specified too many users as recipients of your
 message. MAIL only allows up to 100 user names as recipients of
 a message; it sends your message to the first 100 names but
 ignores all that exceed the first 100.

 Suggested User Response: Send your message to the first 100
 names. Next, edit your MAIL.CPY file to retrieve the message
 text. Then, run MAIL to send the message to the additional
 names, using "@" to send the edited MAIL.CPY file as the message
 text.

 [USER NAME] not sent BECAUSE:
 Invalid directory number

 Description: You attempted to send mail to a nonexistent user
 directory.

 Suggested User Response: You cannot send mail to a user who does
 not have a directory.

 [USER NAME] not sent BECAUSE:
 Invalid simultaneous access

 Description: Another user has the receiver’s MAIL.TXT file open
 for writing.

 Suggested User Response: Follow the recovery procedure described
 in Section 2.2 to resend the message.

 [USER NAME] not sent BECAUSE:
 No such file type (or some other related reason)

 Description: The intended receiver of your message has no
 MAIL.TXT file.

 Suggested User Response: Ask the user to create a MAIL.TXT file
 to receive mail messages.

 2−9

 THE MAIL PROGRAM

 [USER NAME] not sent BECAUSE:
 Disk quota exceeded

 Description: The receiver’s directory exceeds its working quota.

 Suggested User Response: Some files must be deleted from the
 directory before mail can be received. You can also enable WHEEL
 or OPERATOR capabilities to ignore the user’s quota. If the user
 is logged in, you can use the TALK command as an alternative.

 2.5 TECHNICAL NOTES

 MAIL works with another program called MAILER when it handles
 messages. When you type a mail message, MAIL creates a file,
 MAIL.CPY, in your logged−in directory. This file is closed when you
 complete your message input. At this point, MAIL sends an IPCF
 (Inter−Process Communication Facility) packet to the MAILER program to
 inform it that you want to send a message. (For more information on
 IPCF, refer to the TOPS−20 Monitor Calls Reference Manual.) MAILER
 processes the message by appending the contents of MAIL.CPY in your
 logged−in directory to the file MAIL.TXT in the recipient’s logged−in
 directory. Then it sends an IPCF packet back to MAIL, which notifies
 you of the status of your message (sent or not sent). At this point,
 the MAIL.CPY file is deleted from your logged−in directory.

 2−10

 CHAPTER 3

 THE RDMAIL PROGRAM

 3.1 INTRODUCTION

 The RDMAIL program prints messages that have been sent to you by other
 users of the system through the MAIL program. Your MAIL.TXT file in
 your logged−in directory on PS: contains these messages.

 NOTE

 If your MAIL.TXT file contains mail sent by Version 4
 of the MAIL program, you must use Version 4 of RDMAIL
 to read it.

 There are various ways that the system notifies you whenever there is
 mail that you have not read. If another user sends you mail while you
 are not logged in, you receive the following message the next time you
 log in:

 @ LOGIN (USER) DBELL (PASSWORD) (ACCOUNT) 341<RET>
 Job 35 on TTY42 29−Aug−79 16:14:12
 You have a message
 @

 Another user may send you a message while you are logged in. In this
 case, the system types

 [You have a message from SENDER]

 on your terminal.

 Messages−of−the−Day sent to you when you are not logged in are printed
 on your terminal automatically after you log in. However, if your
 directory is set to REPEAT LOGIN−MESSAGES, you receive all
 Messages−of−the−Day every time you log in. For more information on
 the REPEAT LOGIN−MESSAGES subcommand, refer to the BUILD command
 description in the TOPS−20 Commands Reference Manual. If a system

 3−1

 THE RDMAIL PROGRAM

 message is sent while you are logged in and you are receiving system
 messages, you are notified immediately:

 [New Message−of−the−Day available]

 You can give the SET MAIL−WATCH command to keep informed of any new
 mail you receive, especially if you have given the REFUSE
 SYSTEM−MESSAGES command. (For more information on these two commands,
 refer to the TOPS−20 Commands Reference Manual.) You can add the SET
 MAIL−WATCH command to your COMND.CMD file, if you have one, or type it
 each time you log in. When you give this command, it tells the system
 to notify you when you have new mail. You receive this notification
 only when you are at TOPS−20 command level. At intervals of
 approximately five minutes, the TOPS−20 Command Processor informs you
 that you have new mail whenever it prompts you for a new command.
 This message appears on your terminal:

 [You have new mail]

 You may give the INFORMATION MAIL command, even if you are not logged
 in, to check on the status of new mail for yourself or other users.
 To do this, type the following:

 @ INFORMATION (ABOUT) MAIL (FOR USER) name<RET>

 The system returns with one of the following responses:

 New mail exists

 or

 No new mail exists

 or

 Mailbox protected

 3.2 RUNNING RDMAIL

 To start RDMAIL, type RDMAIL after the TOPS−20 prompt @ and press the
 RETURN key. The program responds with the date and time prompt as
 follows:

 @ RDMAIL<RET>
 Date and time (/HELP for help)

 If you have enabled WHEEL or OPERATOR capabilities, RDMAIL first asks
 you whether you want to read your own mail or that of another user.
 For example:

 3−2

 THE RDMAIL PROGRAM

 $ RDMAIL<RET>
 Special user (y or n)?

 If you type y, you are indicating that you wish to read another user’s
 mail. Type y and press RETURN. RDMAIL then prompts you to type the
 name of the user whose mail you wish to read. Type the user name and
 press RETURN. RDMAIL then prompts you for date and time input. For
 example:

 $ RDMAIL<RET>
 Special user (y or n)? y<RET>
 User name: DNeff<RET>
 Date and time (/HELP for help)

 If you type n, you are indicating that you wish to read your own mail.
 Type n and press RETURN. RDMAIL then prompts you for date and time
 input. For example:

 $ RDMAIL<RET>
 Special user (y or n)? n<RET>
 Date and time (/HELP for help)

 RDMAIL allows you to read your messages several ways:

 o By giving a date and/or time

 o By giving a program switch or combination of switches

 o By giving a date and/or time combined with one or more
 program switches.

 To read any new messages, simply press RETURN.

 You can define a time period of mail you wish to read. To do this,
 type a date and/or a time. A common TOPS−20 format is:

 MMM DD,YYYY HH:MM:SS

 For example, a valid date and time is May 22,1979 17:00:00. If you
 type only a date, RDMAIL assumes the time 00:01:00. If you type only
 a time, the program assumes the present date. RDMAIL responds by
 displaying all messages you received on and after the date and/or time
 you typed.

 If you type an invalid date or time, you receive an error message.
 Three of the most common ones are:

 ?Invalid date format

 or

 ?Invalid time format

 3−3

 THE RDMAIL PROGRAM

 or

 ?Day of month too large

 After the error message RDMAIL returns with the prompt for you to type
 a valid date and/or time.

 Table 3−1 describes the RDMAIL switches you can use after the prompt,
 either alone or combined with date/time input.

 Table 3−1: RDMAIL Switches

 __

 Switch Function
 __

 /ALL Types all messages, regardless of date.

 /HELP Types the program help text, outlining the
 time/date format and program switches and
 their functions.

 /LIST Outputs messages to the line printer,
 rather than to your terminal.

 /MESSAGE−OF−THE−DAY Types messages from the system
 Message−of−the−Day file, rather than from
 your own message file.

 /PERUSE Allows you to peruse messages, and gives
 only the following information for each
 message:
 Date: From: To: CC: and Subject.

 /STOP Instructs RDMAIL to stop after each message
 it types. At the end of each message, the
 system prompts you to type RETURN for more
 output.
 __

 3.2.1 Reading Mail Using RDMAIL Switches

 You type RDMAIL switches immediately following the prompt, and may or
 may not combine them with a date and/or time. You have the options of
 combining switches and preceding each switch with a space. To use
 RDMAIL switches, type a slash (/) followed by the switch name.

 3−4

 THE RDMAIL PROGRAM

 /HELP − HELP Switch

 Type /HELP to get information on running RDMAIL. For example:

 @ RDMAIL<RET>
 Date and time (/HELP for help) /HELP<RET>

 After the help text prints on your terminal, the system returns with
 the prompt for you to type date/time information and/or another
 switch.

 NOTE

 HELP overrides all other switches that you may combine
 with it. The system ignores all other specified
 switches in the combination, and prints the full
 RDMAIL help text.

 /ALL − ALL Switch

 Type /ALL when you wish to read all messages in the mail file,
 regardless of date.

 /ALL may be combined with all other program switches except
 /HELP. If you type /ALL after the prompt,

 @ RDMAIL<RET>
 Date and time (/HELP for help) /ALLRET>

 RDMAIL accesses all messages in your file.

 /LIST − LIST Switch

 Type /LIST when you want messages output to the line printer
 rather than to your terminal. /LIST can be combined with
 date/time input, and/or with /ALL. For example,

 @ RDMAIL<RET>
 Date and time (/HELP for help) May 13, 1979 12:00:00 /LIST<RET>

 Prints all messages in your file on and after 12:00:00 of May
 13, 1979 on the line printer.

 If you type only /ALL /LIST after the prompt, RDMAIL prints all
 messages in your file on the line printer.

 /MESSAGE−OF−THE−DAY − System Message Switch

 Type /MESSAGE−OF−THE−DAY to print mail from the system
 Message−of−the−Day file (PS:<SYSTEM>MAIL.TXT), rather than from
 your own message file. Since new entries in the
 Message−of−the−Day file are typed on your terminal when you log
 in, you normally use this switch when a new Message−of−the−Day
 becomes available while you are logged in. /MESSAGE−OF−THE−DAY
 3−5

 THE RDMAIL PROGRAM

 may be combined with date/time input. It may also be combined
 with all other program switches except /HELP. For example:

 [New Message−of−the−Day available]

 @ RDMAIL<RET>
 Date and time (/HELP for help) /MESSAGE−OF−THE−DAY<RET>

 −−−−−−−−
 Date: 25 Jun 79 0853−EDT
 From: OPERATOR
 To: SYSTEM
 Subject: STAND−ALONE AT NOON

 SYSTEM IS GOING DOWN AT NOON FOR NEW MONITOR TO BE LOADED.

 ========
 @

 In this case, the system prints the Messages−of−the−Day since
 June 25, 1979 on your terminal.

 When you type /MESSAGE−OF−THE−DAY after the prompt, RDMAIL
 outputs all new Messages−of−the−Day since you last logged in,
 whether or not you have read them.

 /PERUSE − PERUSE Switch

 Type /PERUSE when you want to peruse messages in your file. Only
 the following lines for each message are printed: Date:, From:,
 To:, CC:, and Subject: /PERUSE can be combined with date/time
 input and all other program switches except /HELP. A sample
 output of /PERUSE is as follows:

 @ RDMAIL<RET>
 Date and time (/HELP for help) Apr 12,1979 /PERUSE<RET>
 −−−−−−−−
 Date: 12 Apr 79 0900−EDT
 From: OSMAN
 To: ADLEY
 −−−−−−−−
 Subject: your files

 −−−−−−−−
 Date: 12 Apr 79 1452−EDT
 From: HARAMUNDANIS
 To: PORADA
 CC: ADLEY,HARAMUNDANIS
 −−−−−−−−
 Subject: DUMPER

 3−6

 THE RDMAIL PROGRAM

 −−−−−−−−
 Date: 17 Apr 79 1451−EDT
 From: LYONS
 To: ADLEY
 −−−−−−−−
 Subject: Re: TEST OF MAIL PROGRAM

 The system continues to output messages from April 12, 1979 to
 the present date.

 /STOP − STOP Switch

 Type /STOP to cause RDMAIL to stop after each message that it
 types. Following each message, the program prompts you to press
 RETURN for more output. /STOP can be combined with date/time
 input and all other program switches except /HELP and /LIST. A
 sample output of /STOP and /PERUSE is as follows:

 @ RDMAIL<RET>
 Date and time (/HELP for help) May 1,1979 /STOP /PERUSE<RET>
 −−−−−−−−
 Date: 1 May 79 1335−EDT
 From: OSMAN
 To: ADLEY
 −−−−−−−−
 Subject: MAILER

 [Type <CR> for more] <RET>
 −−−−−−−−
 Date: 1 May 79 1844−EDT
 From: LYONS
 To: ADLEY
 −−−−−−−−
 Subject: Your account on System 2116

 [Type <CR> for more] <RET>

 The system continues to output messages from May 1, 1979 to the
 present date, allows you to peruse them, and stops after each
 message.

 If you type an invalid switch in RDMAIL, you receive the following
 message:

 ?Does not match switch or keyword

 The system returns with the prompt for you to type a valid switch.

 3−7

 THE RDMAIL PROGRAM

 3.3 RDMAIL MESSAGES

 The most common RDMAIL messages, their descriptions, and suggested
 user responses follow. Fatal errors are preceded by a question mark
 (?). A warning message is preceded by a percent sign (%).

 ?Day of month too large

 Description: You typed an invalid day of the month after the
 program prompt, Date and time (/HELP for help).

 Suggested User Response: Enter a valid day of month when the
 program returns with the prompt following the error message.

 ?Does not match switch or keyword

 Description: You typed an invalid switch after the program
 prompt, Date and time (/HELP for help).

 Suggested User Response: Type one or more valid RDMAIL switches.

 %MAIL.TXT File contains updated entries or improper format

 Description: Your MAIL.TXT file is in the wrong format, possibly
 from being edited with a text editor.

 Suggested User Response: Copy the file so you have a record of
 any current messages. Then, delete the file.

 ?Invalid date format

 Description: You made an error in the date format following the
 program prompt, Date and time (/HELP for help). This error
 differs from an invalid day of the month; the error might be, for
 example, misspelling of the month or an incorrect year.

 Suggested User Response: Type a valid date format when the
 program returns with the prompt after the error message.

 ?Invalid time format

 Description: You typed an invalid time after the program prompt,
 Date and time (/HELP for help). For example, a possible error
 is a nonexistent time such as 26:00:00.

 Suggested User Response: Type a valid time when the program
 returns with the prompt after the error message.

 3−8

 THE RDMAIL PROGRAM

 ?LPT: not available for output

 Description: This message appears in response to /LIST. Either
 you defined a logical name for LPT: that points to an
 unavailable device. RDMAIL ignores /LIST, and prints the mail on
 your terminal.

 Suggested User Response: Wait for the line printer to become
 available, or redefine the logical name to point to an available
 device (such as DSK:).

 3−9
 4−1

 CHAPTER 4

 THE FILCOM PROGRAM

 4.1 INTRODUCTION

 The FILCOM program compares two files and prints any differences
 between them. With FILCOM, you can compare either ASCII files (text
 files and source programs) or binary files (relocatable binary files
 and save files). The comparison is line by line for ASCII files, and
 word by word for binary files.

 4.2 RUNNING FILCOM

 To run FILCOM, type FILCOM, and press the RETURN key. The program
 prompts you for input with an asterisk:

 @ FILCOM<RET>

 *

 After the prompt, enter a FILCOM command string in the following
 format:

 Destination file spec=Source file spec1,Source file spec2/Switches

 where:

 Destination file spec is the output file that contains the
 differences between the two Source files.

 If you do not specify a Destination filename, FILCOM uses the name of
 the file in Source file spec2. If you omit the name in Source file
 spec2, the program uses the filename from Source file spec 1. If
 there is no filename in Source file spec 1, then the filename FILCOM
 is used. The default for the Destination file type is .SCM for ASCII
 files and .BCM for binary files. If you completely omit the
 Destination file spec, FILCOM writes the output to the device TTY:.

 4−1

 THE FILCOM PROGRAM

 Source file spec1 is the first input file you wish to compare.

 You must completely specify this file spec in the command string.

 Source file spec2 is the second input file you wish to compare.

 If you omit the filename in Source file spec2, FILCOM uses the
 filename in Source file spec1. If you omit the file type in Source
 file spec2, FILCOM uses the file type in Source file spec1. To
 indicate a null file type, simply type a period (.) at the end of the
 filename in either Source file spec1 or Source file spec2.

 NOTE

 FILCOM does not accept file generation numbers. You
 can compare two files with the same name and type but
 different generation numbers (for example, FOO.BAR.1
 and FOO.BAR.2) by defining logical names for these
 files. For more information on defining logical
 names, refer to the TOPS−20 User’s Guide.

 FILCOM accepts six characters for a name and three
 characters for type. If more than nine characters are
 used, FILCOM truncates to nine characters.

 You can enter switches after the two input file specs. These switches
 tell FILCOM how to compare the specified files. However, you don’t
 always need to give switches, because FILCOM often determines the type
 of comparison by the file types. If either of the input files is of a
 type listed in Table 4−1, the files are compared in binary mode;
 otherwise they are compared in ASCII mode.

 Table 4−1: Special File Types Recognized by FILCOM

 __

 File type Extension
 __

 .APL .DMP .RIM
 .ATR .MSB .RMT
 .BAC .OVL .RTB
 .BIN .OVR .SCH
 Binary Files: .BUG .QUC .SFD
 .CAL .QUD .SYM
 .CHN .QUE .SYS
 .DAE .QUF .UFD
 .DBS .REL .UNV
 .DCR .XPN

 Sharable Save Files: .EXE

 4−2

 THE FILCOM PROGRAM

 Nonsharable Save Files: .LOW .SAV .SVE

 Offset Address Files;
 word 0 of the file
 treated as if it was
 word 400000. .HGH .SHR
 __

 NOTE

 If FILCOM cannot determine the mode for comparison
 from the input file type or switches, it compares the
 files in ASCII mode.

 For more information on sharable and nonsharable save files and the
 control words used in them, refer to the TOPS−20 Monitor Calls
 Reference Manual.

 After you enter the command string specifying the mode for comparison,
 the two input files, and any necessary switches, press RETURN. When
 FILCOM has finished the comparison, it notifies you of the status:

 %files are different
 or
 No differences encountered

 The program then prints a second asterisk for you to enter another
 command string. For example:

 @ FILCOM<RET>

 * COMPAR.FIL=EXFILE.1,EXFILE.2<RET>
 %files are different

 *

 If you wish to stop the program, type CTRL/C to return to TOPS−20
 command level.

 4.2.1 Comparing ASCII Files

 In ASCII mode, FILCOM compares the characters in each line of the two
 files, always ignoring nulls. Comments and spacing can be selectively
 ignored, based on the switches you type.

 FILCOM contains the following switches that you use in the command
 string to compare ASCII files.

 4−3

 THE FILCOM PROGRAM

 /A Instructs FILCOM to compare the two input files in ASCII
 mode. It treats both files as if they contain ASCII
 characters, searches the files for text differences, and
 ignores similar lines. /A is useful if the input files are
 ASCII files but have one of the file types listed in Table
 4−1.

 /B Considers blank lines in the comparison. If you do not
 specify /B in the command string, FILCOM normally ignores
 blank lines in the two files.

 /C Instructs FILCOM to ignore comments and spacing in the
 files. Comments are defined as text on a line following a
 semicolon. Spacing is defined as spaces and tabs. FILCOM
 normally considers comments and spaces in the comparison.
 This switch is useful when you compare assembly language
 source files (MACRO Assembler source files).

 /H Prints a FILCOM help text, which contains a description of
 the program and all switches, on your terminal. You can
 type /H by itself immediately after the FILCOM prompt, or in
 a command string.

 NOTE

 /H overrides all other switches that you may combine
 with it. The system ignores all other specified
 switches in the combination, and prints the full
 FILCOM help text.

 /nL Defines the number of lines that end a match. When FILCOM
 finds that number of successive lines that are the same in
 both input files, it prints all differences found up to the
 time of the match. The FILCOM output includes the first
 line of the match for easy reference. FILCOM normally uses
 the value "3" for the number of lines (the value of n).

 /O Instructs FILCOM to include a label and offset in the
 differences listing for ASCII files. There are three types
 of messages:

 [;At top of file + nL] where nL is a decimal number
 representing the number of lines between the top of the file
 and the line where the difference occurs. If a difference
 occurs at the top of the file, nL is not listed.

 [;At Label + nL] where Label is the MACRO−style label
 immediately preceding the difference and nL represents the
 decimal number of lines away from the label that the
 difference occurs. If the difference occurs at the label,
 nL is not listed.

 4−4

 THE FILCOM PROGRAM

 [;At Label + nL following label name] for PDP−11 files,
 where label is the local label name in the form nn$, nL
 represents the decimal number of lines from the local label
 that the difference occurs and label name is the name of the
 last preceding block label. The block label name is listed
 as further help in locating the difference, since local
 label names are not always unique. If the difference occurs
 at the label, nL is not listed. If the difference occurs
 before FILCOM sees a label, the difference is listed as [;At
 label + nL] where label is the block label. The label name
 for all labels must be in the first ten characters of the
 line. Labels refer to file 1, not file 2.

 /Q Instructs FILCOM to print only the status of the comparison
 (either ?files are different or No differences encountered).
 FILCOM does not enumerate the differences between the files.
 It stops reading the files after it discovers the first
 difference.

 /S Ignores spaces and tabs in the comparison of two ASCII
 files. FILCOM normally considers spaces and tabs in the
 comparison.

 /T Instructs FILCOM to generate an output file even if no
 differences are found. If the /T switch is omitted and
 there are no differences in the files, no output file is
 generated.

 /U Compares your two input files in update mode. This means
 that FILCOM creates an output file, which is the second
 input file, with change bars in the left margin next to the
 lines that differ from those in the first input file.
 Deleted lines are indicated by a change bar on the next
 common line. /U is helpful when you are comparing two
 versions of text. To obtain a meaningful comparison, type
 the latest version of the file as the second input file in
 the command string. It is recommended that /nL be used with
 the /U switch.

 The output file in ASCII mode comparison includes a header for each
 input file that contains the following information:

 o the file number

 o the file spec

 o the date and time the input file was created.

 The following is an example of a header that would appear in an ASCII
 output file:

 File 1) DSK:FORLIB.TXT[4,244] created: 1052 26−JUL−1979

 4−5

 THE FILCOM PROGRAM

 File 2) DSK:FORTEX.TXT[4,244] created: 1155 26−JUL−1979

 NOTE

 If you use /U in the FILCOM command string (compare in
 update mode), this header does not appear.

 Each time FILCOM finds differences between two ASCII input files, it
 outputs a number corresponding to a page number in the first file, and
 the differences. At the end of the list of differences, the program
 prints a common line between the two files. The program then prints
 four asterisks, a number corresponding to the second input file, and
 the differences. Then FILCOM repeats the set of differences until all
 the differences between the two files are found. A row of 14
 asterisks (*) marks the end of a difference.

 For example, you have two text files named FIL1.TXT and FIL2.TXT. Use
 the TYPE command to examine the contents of both files:

 @ TYPE FIL1.TXT<RET>
 this is line 1
 this is line 2
 this is line 3
 this is line 4
 this is line 5
 this is line 5.5
 this is line 6
 this is line 7
 this is line 8
 this is line 9 ;this is a comment
 this is line 10
 @ TYPE FIL2.TXT<RET>
 this is line 1
 this is line 2
 this is line 3
 this is line 4
 this is line 5.5
 this is line 6
 this is line 7

 this is line 8
 this is line 9
 this is line 10
 this is line 11
 this is line 12
 this is line 13
 this is line 14, which is the end.
 @

 Run FILCOM to compare these files and name the output file DIFFER.SCM.
 Type the following:

 4−6

 THE FILCOM PROGRAM

 @ FILCOM<RET>

 * DIFFER.SCM=FIL1.TXT,FIL2.TXT<RET>

 %files are different

 *

 The program informs you that the files are different, and then gives
 you the asterisk prompt for more input. To see the differences that
 FILCOM found between the two files, return to TOPS−20 command level
 (type CTRL/C) and use the TYPE command.

 %files are different
 * CTRL/C
 @ TYPE DIFFER.SCM<RET>
 FILE 1) DSK:FIL1.TXT[4,67] created: 1212 25−Jul−1979
 File 2) DSK:FIL2.TXT[4,67] created: 1616 25−Jul−1979

 1)1 this is line 5
 1) this is line 5.5

 2)1 this is line 5.5

 1)1 this is line 9 ;this is a comment
 1) this is line 10

 2)1 this is line 9
 2) this is line 10
 2) this is line 11
 2) this is line 12
 2) this is line 13
 2) this is line 14, which is the end.

 @

 The output shows the differences between the two files. Line 5 was
 deleted, line 9 was changed, and lines 11−14 were inserted. The two
 blank lines in FIL2.TXT are ignored, because /B was not specified in
 the command string. The number "1" that appears beside 1) and 2) in
 the output is the page number of the file where the differences were
 found. Text pages are delimited by formfeeds.

 Now, compare FIL1.TXT and FIL2.TXT using /C in the command string.

 @ FILCOM<RET>

 * TTY:=FIL1.TXT,FIL2.TXT/C
 File 1) DSK:FIL1.TXT[4,67] created: 1212 25−Jul−1979
 File 2) DSK:FIL2.TXT[4,67] created: 1616 25−Jul−1979

 1)1 this is line 5

 4−7

 THE FILCOM PROGRAM

 1) this is line 5.5

 2)1 this is line 5.5

 2)1 this is line 11
 2)1 this is line 12
 2)1 this is line 13
 2)1 this is line 14, which is the end.

 %files are different
 *

 The output is different because /C causes FILCOM to ignore comments
 and spacing in the files.

 Using the same two text files, now compare them in update mode, and
 write the output to the device TTY: (your terminal). Because
 FIL2.TXT is the latest version of the two text files, type it as the
 second input file in the command string. The command string is:

 @ FILCOM<RET>

 * TTY:=FIL1.TXT,FIL2.TXT/U<RET>
 this is line 1
 this is line 2
 this is line 3
 this is line 4
 | this is line 5.5
 this is line 6
 this is line 7
 |
 |
 | this is line 8
 | this is line 9
 | this is line 10
 | this is line 11
 | this is line 12
 | this is line 13
 | this is line 14, which is the end.
 %files are different

 *

 As mentioned previously, in update mode comparisons, the output file
 is the second input file (latest version) with change bars inserted
 next to the differences found between the two files. The example
 above shows such an output file. Note that the program also types the
 "%files are different" status on your terminal. Following this,
 FILCOM gives another prompt for another command string.

 4−8

 THE FILCOM PROGRAM

 4.2.2 Comparing Binary Files

 FILCOM automatically determines that a file is binary if it has one of
 the file types listed in Table 4−1.

 Sharable and nonsharable save files represent the location of data in
 memory. In FILCOM, expanding the files before comparing them means to
 compare the data as it would appear if the files were loaded into
 memory. Comparing the files without expanding them means to compare
 each word in the files regardless of the usual meaning of the files’
 control words.

 You can list a binary file with FILCOM. To do this, simply omit the
 comma and the second input file spec in the command string.

 FILCOM contains the following switches that you use in the command
 string to compare binary files. Switches control what part of the
 binary file you see.

 /E Forces FILCOM to consider both input files as sharable save
 files regardless of the file types given. Normally, FILCOM
 selects its comparison according to the file types of the
 files.

 /H Prints the FILCOM help text. Refer to the description of /H
 in Section 4.2.1.

 /nL Compares a binary file starting at word "n". The number "n"
 is an octal number. Refer to /nU, below.

 /Q Instructs FILCOM to print only the status of the comparison.
 It does not list the actual differences, and causes FILCOM
 to stop reading the files after it discovers the first
 difference. Refer to the description of this switch in
 Section 4.2.1.

 /nU Compares a binary file up through word "n". The value "n"
 is an octal number as in /nL. If you combine /nU with /nL
 in the command string, the input files are compared only
 within these limits.

 /T Instructs FILCOM to generate an output file even if no
 differences are found. If the /T switch is not used, FILCOM
 produce no differences listing if there are no differences
 in the files.

 /W Compares two binary files that have nonstandard file types.
 (Standard file types are listed in Table 4−1.) The files are
 not expanded before FILCOM compares them. /W compares the
 files’ internal control words in addition to data, reading
 the files one word at a time.

 4−9

 THE FILCOM PROGRAM

 /X Instructs FILCOM to expand nonsharable save files before
 comparing them in binary mode. The program ignores control
 words and compares only the code in the files.

 All FILCOM binary switches apply when you dump a file. Expanding a
 file shows how it would appear in memory. Dumping a file without
 expanding it shows the file’s internal format.

 The output file of a binary mode comparison contains the same header
 as output files for ASCII comparisons. (Refer to Section 4.2.1.)
 However, the comparison differs because it is done word by word. If
 the left halves of the two words being compared are the same, FILCOM
 prints the absolute difference between the two words. Otherwise,
 FILCOM prints the logical exclusive OR (XOR).

 For example, you want to compare two binary files. They are FIL3.BIN
 and FIL4.BIN. First you use FILCOM to dump them and examine their
 contents. The output is written to your terminal:

 @ FILCOM<RET>

 * TTY:=FIL3.BIN<RET>
 000000 201400 000000
 000001 202400 000000
 000002 202600 000000
 000003 203400 000000
 000004 203500 000000
 000005 203600 000000
 000006 203700 000000
 000007 204400 000000
 000010 204440 000000
 000011 204500 000000

 %files are different

 * TTY:=FIL4.BIN<RET>
 000000 201400 000000
 000001 202400 000000
 000002 202600 000000
 000003 203400 000000
 000004 203540 000000
 000005 203600 000000
 000006 203700 000000
 000007 204420 000000
 000010 204440 000000
 000011 204500 000000

 %files are different

 *

 4−10

 THE FILCOM PROGRAM

 Now compare the files. Note that since both file types are .BIN, the
 program automatically compares them in binary mode without you
 specifying any switches. Again, the output is written to your
 terminal:

 @ FILCOM<RET>

 * TTY:=FIL3.BIN,FIL4.BIN<RET>
 File 1) DSK:FIL3.BIN[4,67] created: 1419 10−Sep−1979
 File 2) DSK:FIL4.BIN[4,67] created: 1419 10−Sep−1979

 000004 203500 000000 203540 000000 000040 000000
 000007 204400 000000 204420 000000 000020 000000

 %files are different

 *

 Compare the files once more, but specify a quick comparison (/Q) in
 the command string. This causes FILCOM to merely report the status of
 the comparison. If there are differences, the status message prints
 with a question mark, ?, instead of a percent sign, %, for error
 detection in batch jobs. (Refer to Section 4.4, FILCOM Messages.)
 The command string for this comparison is as follows:

 @ FILCOM<RET>

 * TTY:=FIL3.BIN,FIL4.BIN/Q<RET>
 File 1) DSK:FIL3.BIN[4,67] created: 1419 10−Sep−1979
 File 2) DSK:FIL4.BIN[4,67] created: 1419 10−Sep−1979

 ?files are different

 *

 Do a third comparison of these two files, but now restrict the range
 with /nU and /nL:

 @ FILCOM<RET>

 * TTY:=FIL3.BIN,FIL4.BIN/5L/6U<RET>

 No differences encountered

 In the following example, you are comparing two executable files.
 FILCOM automatically expands them because of the .EXE file type:

 4−11

 THE FILCOM PROGRAM

 @ FILCOM<RET>

 * TTY:=FIL1.EXE,FIL2.EXE<RET>
 File 1) DSK:FIL1.EXE[4,67] created: 1426 10−Sep−1979
 File 2) DSK:FIL2.EXE[4,67] created: 1427 10−Sep−1979

 000141 600000 000000 255000 000000 455000 000000
 002112 000004 015062 000004 015063 000001

 %files are different

 *

 In this last example, you compare both .EXE files without expanding
 them first. Any differences that exist in the files’ internal
 directory pages appear in the output. The command string for this
 comparison is as follows:

 @ FILCOM<RET>

 * TTY:=FIL1.EXE,FIL2.EXE/W<RET>
 File 1) DSK:FIL1.EXE[4,67] created: 1426 10−Sep−1979
 File 2) DSK:FIL2.EXE[4,67] created: 1427 10−Sep−1979

 000000 001776 000003 001776 000007 000004
 000002 002000 000000 000000 000000 002000 000000
 000003 001775 000003 000000 000002 001775 000001
 000004 000000 254000 000000 000001 253777
 000005 000000 000140 300000 000003 300000 000143
 000006 001777 000001 000000 000002 001777 000003
 000007 000000 000000 001775 000003 001775 000003
 000010 000000 000000 000000 254000 254000
 000011 000000 000000 000000 000140 000140
 000012 000000 000000 001777 000001 001777 000001
 001141 600000 000000 255000 000000 455000 000000
 003112 000004 015062 000004 015063 000001

 %files are different

 *

 4.3 FILCOM SWITCHES

 Table 4−2 contains all the FILCOM switches in alphabetical order. It
 also lists the mode of comparison and description for each switch.

 4−12

 THE FILCOM PROGRAM

 Table 4−2: FILCOM Switches

 __

 Switch Comparison Description
 __

 /A ASCII Compares files in ASCII mode

 /B ASCII Considers blank lines in the comparison

 /C ASCII Ignores comments and spacing in MACRO
 source files

 /E Binary Considers both files as sharable save
 files

 /H ASCII& Prints the FILCOM help text
 Binary

 /nL ASCII& Defines the number of lines
 Binary that end a match in ASCII comparisons;
 determines the lower limit where a partial
 comparison begins in binary comparisons

 /nU Binary Determines the upper limit where a partial
 binary comparison stops

 /O ASCII Includes a label name and offset in the
 differences listing

 /Q ASCII& Prints only the status of the
 Binary comparison; does not enumerate the
 differences

 /S ASCII Ignores spacing and tabs in the comparison

 /T ASCII& Produces an output file even
 Binary if no differences are found

 /U ASCII Compares the files in update mode and
 inserts change bars next to the
 differences

 /W Binary Compares binary files with nonstandard
 file types, ignoring control words (if
 any)

 /X Binary Expands nonsharable save files before
 comparing them
 __

 4−13

 THE FILCOM PROGRAM

 4.4 FILCOM MESSAGES

 Some of the messages printed by FILCOM contain information that is
 dependent on the exact command string, switch, or file you specified.
 The key to these message variables follows:

 [device] A device name.

 [file] A file spec.

 [n] A designator for the first or second input file.

 [reason] The reason for a file access failure. These are
 listed in Table 4−3 at the end of this section.

 The most common FILCOM messages are listed below alphabetically. They
 are all fatal errors that are preceded by a question mark (?).

 ?Buffer capacity exceeded and no core available

 Description: You attempted to compare two text files with a
 difference so large that FILCOM cannot obtain enough memory to
 store the differences.

 Suggested User Response: Check that you are comparing two files
 that are reasonably similar; or, use /nL with n larger than the
 value 3.

 ?Command error

 Description: You typed an invalid command. You may not have
 typed a second file specification. You may have included an
 invalid line terminator or a nonalphanumeric character in a file
 specification.

 Suggested User Response: Retype the correct command syntax.

 ?Command error −− Unknown switch X

 Description: You typed an invalid switch. The invalid switch is
 specified by the X character in the message.

 Suggested User Response: Retype the correct switch and reissue
 the command.

 ?Command error −− Double filename illegal

 Description: You typed a double filename in your command string.

 Suggested User Response: Retype the correct command syntax and
 reissue the command.

 4−14

 THE FILCOM PROGRAM

 ?Command error −− Double file type illegal

 Description: You typed a double file type in your command
 string.

 Suggested User Response: Retype the correct command syntax and
 reissue the command.
 ?Device [device] Not available

 Description: The device you specified is not available. In
 other words, someone may be using it, or there may be no such
 device on your system.

 Suggested User Response: Specify a device available to you.

 ?FILE [n] NOT IN CORRECT EXE FORMAT

 Description: The first or second input file in the command
 string is not a correctly formatted sharable save file (.EXE file
 type). You may have specified a file that is in nonsharable save
 file format (a result of the TOPS−20 CSAVE command, rather than
 the SAVE command).

 Suggested User Response: Do not use nonsharable save files.
 They are less efficient than regular sharable save files. Bring
 the program into memory with the TOPS−20 GET command, save it
 again with the SAVE command, and then reissue the commands. You
 can also look at the files as nonsharable save files or pure
 binary files.

 ?File [n] not in SAV format

 Description: Your first or second input file is not in proper
 nonsharable save file format.

 Suggested User Response: Specify the correct file or look at the
 files as sharable save files or pure binary files.

 ?File [n] read error

 Description: Your first or second input file contains an error.

 Suggested User Response: Try the operation again. If it still
 fails, ask the operator to check the device for errors.

 ?Input error for input file [n]− [file] [reason]

 Description: FILCOM could not access your first or second input
 file for the reason specified. (Refer to Table 4−3 for the exact
 reason.)

 Suggested User Response: The particular reason in Table 4−3
 gives corrective action.

 4−15

 THE FILCOM PROGRAM

 ?NOT ENOUGH CORE AVAILABLE TO HOLD DIRECTORY

 Description: FILCOM is attempting to compare your sharable save
 files, but cannot get enough memory to hold the file’s internal
 directory.

 Suggested User Response: Re−create the .EXE file. If the error
 persists, contact your Software Specialist, or send a Software
 Performance Report (SPR) to DIGITAL.

 ? Output device error

 Description: FILCOM received an error while writing your file.

 Suggested User Response: The device may be faulty. If the
 problem persists, contact your operator to fix the problem.
 ?Output device error− [device] cannot do output

 Description: You specified a device that is unable to do output,
 such as a card reader.

 Suggested User Response: Specify a device that is capable of
 producing output.

 ?Output ENTER error for [file] [reason]

 Description: FILCOM is unable to write the file for the reason
 specified.

 Suggested User Response: Refer to Table 4−3 for corrective
 action that applies to the reason for the error.

 Table 4−3 contains the various reasons for file access errors that can
 appear in FILCOM messages.

 4−16

 THE FILCOM PROGRAM

 Table 4−3: Reasons for File Access Errors

 __

 Error Reason
 __

 (0) File not found You specified a file that does
 not exist. Specify an existing
 file.

 (1) Nonexistent UFD You specified a directory that
 does not exist. Specify an
 existing directory.

 (2) Protection failure You do not have sufficient
 privileges to access the named
 file. Negotiate the needed
 privileges with the system
 operator or the owner of the
 file.

 (3) File being modified Another job is currently
 modifying the named file. Try
 to access the file at another
 time or use a different
 filename.

 (14) No room or quota exceeded You exceeded the quota of the
 named directory or the entire
 capacity of the named file
 structure. Delete and expunge
 some of your files, or specify a
 directory or structure with
 sufficient space.

 (15) Write−lock error You requested an output file on
 a write−locked device, such as a
 magnetic tape. Either
 write−enable the device and try
 again, or specify another
 device.
 __

 4−17
 5−1

 CHAPTER 5

 THE CREF PROGRAM

 5.1 INTRODUCTION

 The CREF program generates cross−reference listings from .CRF files.
 You produce .CRF files with LOAD−class commands. (Refer to the
 TOPS−20 Commands Reference Manual.) A cross−reference listing is one
 that contains your source program (from either the ALGOL or FORTRAN
 compilers, or the MACRO assembler) plus a list of all the symbols used
 and the line numbers on which they are used. As such, the CREF
 program is a helpful tool for debugging and modifying programs written
 in these languages.

 NOTE

 You do not need to run CREF for COBOL programs. The
 COBOL compiler automatically generates CREF listings.

 5.2 RUNNING CREF

 Because CREF reads only .CRF format files, you must first create these
 files before you run CREF. These files are created when your program
 is compiled. Section 5.2.1 describes how to create .CRF files.

 Once you create .CRF files, you can run CREF to produce
 cross−reference listings. Section 5.2.2 describes how to run CREF.

 5.2.1 Creating .CRF Files with COMPILE

 To create a .CRF file, you must compile your program. To do this,
 type COMPILE after the TOPS−20 prompt @, followed by /CREF and the
 name of the program you want to compile; then press the RETURN key.
 After you press RETURN, the system compiles your program and then
 returns you to TOPS−20 command level. For example:

 5−1

 THE CREF PROGRAM

 @ COMPILE/CREF BE.MAC<RET>
 MACRO: BE

 EXIT
 @

 Compiling a program does not automatically create a .CRF file. This
 is why you specify /CREF in the command string. For more information
 on the COMPILE command, refer to the TOPS−20 Commands Reference
 Manual.

 You can create .CRF files of two programs in the same command string.
 For example:

 @ COMPILE/CREF BE.MAC,CREFA.MAC<RET>
 MACRO: BE
 MACRO: CREFA

 EXIT
 @

 Note that this one command string is equivalent to creating .CRF files
 of both programs separately, as in the example below:

 @ COMPILE/CREF BE.MAC<RET>
 MACRO: BE

 EXIT
 @ COMPILE/CREF CREFA.MAC<RET>
 MACRO: CREFA

 EXIT
 @

 If your program has already been compiled, the above procedure will
 not work. You will immediately return to TOPS−20 command level after
 typing the command string. To create a .CRF file of an already
 compiled program, you must recompile the program. Type the COMPILE
 command followed by /COMPILE, /CREF, the program name, and press
 RETURN. For example:

 @ COMPILE/COMPILE/CREF BE.MAC<RET>
 MACRO: BE

 EXIT
 @

 5.2.2 Producing Cross−Reference Listings

 Once you create a .CRF file, you can run CREF to generate the actual

 5−2

 THE CREF PROGRAM

 cross−reference listing. There are four types of tables that you can
 get in these listings. The four types of tables are:

 o Regular Symbols − This table contains user−defined symbols,
 labels, address tags, and assignments.

 o OPDEF and Macro Names − This table contains user−defined
 operators such as macro calls and OPDEFs.

 o Op Codes − This table contains hardware machine mnemonics and
 assembler pseudo−ops, such as MOVE and XALL.

 o Procedure Nesting Levels − This table contains the names of
 procedures and numbers of blocks, indented to show their
 nesting in the program. Only the ALGOL compiler generates
 this table in a CREF listing.

 You produce cross−reference listings by running CREF and giving a
 command string with switches to specify the type of listing you
 desire. The general command string format is:

 Destination file spec=Source file spec1/Switches,Source file
 spec2/Switches...

 where:

 Destination file spec is the output file that contains the
 cross−reference listing.

 If you omit the device and the filename in the Destination file spec,
 CREF uses the device LPT:. If you omit the device but do specify a
 filename, CREF uses the device DSK:. If you do not specify a filename
 in the Destination file spec, CREF uses the filename in Source file
 spec1. If you do not specify a file type in the Destination file
 spec, CREF uses the type .LST. If you omit the equal sign (=) in the
 command string, CREF uses all defaults for the Destination file spec
 (you only specify the Source file specs).

 Source file spec1,Source file spec2...are the input files. These
 are the .CRF files you produced from compiling your programs.

 If you omit the device in any of the Source file specs, CREF uses the
 device DSK:. If you omit a filename in any Source file spec, CREF
 uses the filename CREF. If you omit a file type in any Source file
 spec, CREF uses the file type .CRF, then .LST, .TMP, and null.

 If you omit a PPN or a logical name for a PPN in either the
 Destination file spec or any of the Source file specs, CREF assumes
 that you mean your connected directory.

 As mentioned, you can type CREF program switches in the command string
 after each input file spec. These switches and their functions are

 5−3

 THE CREF PROGRAM

 described in Table 5−1.

 Table 5−1: CREF Switch Options

 __

 Switch Function
 __

 /A Advances magnetic tape reel by one file. You can type
 this switch more than once in the command string.

 /B Backspaces magnetic tape reel by one file. You can type
 this switch more than once in the command string.

 /C Cancels the processing of any switches in your SWITCH.INI
 file.

 /D Restores the processing of any default switches in your
 SWITCH.INI file.

 /H Types the CREF help file. /H is illegal in a SWITCH.INI
 file.

 /K Suppresses Regular Symbol Table in the CREF listing.

 /M Suppresses OPDEF/Macro Table in the CREF listing.

 /O Includes the Op Code Table in the CREF listing.

 /P Preserves an input file with the file type .CRF or .LST.
 These types of input files are normally deleted.

 /R Requests the line number at which the CREF listing is to
 start. CREF types out "RESTART LISTING AT LINE:", after
 which you type the line number and press RETURN. If you
 use an indirect file, CREF looks for the number in the
 indirect file. /R is most useful for physical
 (non−spooled) line printers, and is illegal in a
 SWITCH.INI file.

 /S Suppresses the program listing and lists only the tables
 you select.

 /T Skips to the logical end of the magnetic tape.

 /W Rewinds the magnetic tape.

 /Z Zeros the DECtape directory. This is a historical switch,
 and is illegal.
 __

 5−4

 THE CREF PROGRAM

 If you always want to use specific switches when you run CREF, you can
 put these switches in a SWITCH.INI file. Then, each time you run
 CREF, it automatically reads these switches from the SWITCH.INI file.
 You can use all CREF switches in your SWITCH.INI file except /H and
 /R. For more information on creating a SWITCH.INI file, refer to the
 TOPS−20 User’s Guide.

 You can use an indirect file in CREF to reference a file within a
 command string. The indirect file can contain a complete or partial
 CREF command string (filenames and switches). For more information on
 using indirect files, refer to the TOPS−20 User’s Guide.

 You can produce cross−reference listings by typing CREF as a command
 or as a program name after the TOPS−20 prompt @. To run CREF as a
 command, type CREF after the TOPS−20 prompt @ and press RETURN. This
 causes CREF to produce a cross−reference listing of any .CRF files you
 created in that particular terminal session. For example, if you
 create .CRF files for BE.MAC and CREFA.MAC and then run CREF, type the
 following:

 @ CREF<RET>
 CREF: BE
 CREF: CREFA
 @

 Because you did not specify a switch, the default is for CREF to give
 you a cross−reference listing that contains a Regular Symbols Table
 and an OPDEF/Macro Table for each of the two .CRF files. If you only
 specify switches with this format, these switches apply to all files
 CREF processes. If one of your CRF files is an ALGOL program, the
 listing also includes the Procedure Nesting Level Table.

 If you create .CRF files for several programs, but want a
 cross−reference listing of just one file, type CREF after the TOPS−20
 prompt @ followed by a CREF command string. For example, you have
 .CRF files for BE.MAC and CREFA.MAC, but you only want a
 cross−reference listing for BE.MAC. Type the following:

 @ CREF BE.LST=BE.CRF/Switch<RET>
 CREF: BE
 @

 This command string causes CREF to produce a cross−reference listing
 for BE.MAC that includes any tables you specify with the switch.

 To run CREF as a program, type R CREF after the TOPS−20 prompt @ and
 press RETURN. The program prompts you with an asterisk. Now type a
 CREF command string. For example, you create a .CRF file for BE.MAC
 and then run CREF as a program, specifying /O in the command string.
 Type the following:

 @ R CREF<RET>

 5−5

 THE CREF PROGRAM

 * BE.LST=BE/O<RET>
 [CRFXKC 5K CORE]
 *

 This command string causes CREF to produce an cross−reference listing
 for BE.MAC that contains a Regular Symbols Table, an OPDEF/Macro
 Table, and the Op Code Table (/O appears in the command string).

 NOTE

 For an explanation of the program
 message in square brackets that appears
 in the last example, refer to Section
 5.5, CREF Messages.

 You can also run other programs from CREF. To do this, type R CREF
 after the TOPS−20 prompt @ and press RETURN. After the asterisk
 prompt, type the filespec for the second program you wish to run, then
 type an exclamation point (!) and press RETURN.

 5.3 CREF EXAMPLES

 First, type your SWITCH.INI file to see that /O is included for CREF.
 Then define the logical name LPT: so that the CREF output goes to the
 disk, where you can type it. Without the logical name, the output is
 spooled to the line printer.

 @ TYPE SWITCH.INI<RET>
 CREF/O
 RUNOFF/CRETURN/MESSAGE:(NOPREFIX,FIRST)
 MAKLIB/MESSAGE:(NOPREFIX,FIRST)
 @ DEFINE LPT: DSK:<RET>
 @

 Now, compile a MACRO assembler program and request a CREF listing.
 Process MACRO’s listing file with CREF to get the final listing. Note
 that because of the /O on the CREF line in SWITCH.INI, CREF
 automatically includes the Opcode Table.

 @ COMPILE/COMPILE/CREF CREFA<RET>
 MACRO: CREFA

 EXIT
 @ CREF<RET>
 CREF: CREFA
 @ TYPE CREFA.LST<RET>
 LCREFA CREF Example MACRO %53A(1152) 10:39 10−Sep−79 Page 1
 CREFA MAC 11−Jul−79 11:54 Show What CREF Does

 5−6

 THE CREF PROGRAM

 1 TITLE CREFA CREF Example
 2 SUBTTL Show What CREF Does
 3
 4 SEARCH MACSYM, MONSYM
 5 SALL
 6 NOSYM
 7
 8 000000 T0=0
 9 000016 L=16
 10 000017 P=17
 11
 12 000017 CONST=17
 13 ENTRY TIMES.
 14
 15 000000’ 201 00 0 00 000017 TIMES.: MOVX T0,CONST
 16 000001’ 220 00 1 16 000000 IMUL T0,@(L)
 17 000002’ 263 17 0 00 000000 RET
 18
 19 END

 NO ERRORS DETECTED

 PROGRAM BREAK IS 000003
 CPU TIME USED 00:00.872

 67P CORE USED

 ^LCONST 12# 15
 L 9# 16
 P 10#
 T0 8# 15 16
 TIMES. 13 15#
 ..MX1 15# 15 16
 ..MX2 15# 16
 .PSECT 15 16

 ^LMOVX 15
 RET 17

 ^LEND 19
 ENTRY 13
 IFDEF 15
 IFE 15 16
 IFNDEF 16
 IMUL 16
 MOVEI 15
 NOSYM 6
 PURGE 16
 SALL 5
 SEARCH 4
 SUBTTL 2
 TITLE 1

 5−7

 THE CREF PROGRAM

 .IF 15
 .IFN 15
 .PSECT 15 16
 @
 Now, compile a FORTRAN program. Generate the CREF listing and type the
 result.

 @ COMPILE/COMPILE/CREF CREFB<RET>
 FORTRAN: CREFB
 TIMES
 @ CREF<RET>
 CREF: CREFB
 @ TYPE CREFB.LST<RET>
 ^LTIMES CREFB.FOR FORTRAN V.5A(621) /KI/C 10−SEP−79 10:39 PAGE 1

 00001 FUNCTION TIMES(ARG)
 00002
 00003 PARAMETER CONST = 17
 00004 INTEGER TIMES, ARG
 00005
 00006 10 TIMES = CONST*ARG
 00007 RETURN
 00008
 00009 END

 SUBPROGRAMS CALLED

 SCALARS AND ARRAYS ["*" NO EXPLICIT DEFINITION − "%" NOT REFERENCED]

 TIMES 1 ARG 2

 TEMPORARIES

 ^LARG 1# 4# 6
 CONST 3# 6
 TIMES 1# 4# 6#
 10P 6#

 TIMES [NO ERRORS DETECTED]
 @

 Finally, compile an ALGOL program. Generate the CREF listing as
 before and type the result. Note the Procedure Nesting Table.

 5−8

 THE CREF PROGRAM

 @ COMPILE/COMPILE/CREF CREFC<RET>
 ALGOL: CREFC

 EXIT
 @ CREF<RET>
 CREF: CREFC
 @ TYPE CREFC.LST<RET>
 DECsystem 10 ALGOL−60, Version 6A(654) 10−SEP−79 10:39:35
 Command string: CREFC,CREFC/C=MISC:CREFC.ALG

 1 000005 B1 1 BEGIN REAL X, Y;
 2 000005 2
 3 000012 3 REAL PROCEDURE SQUAREROOT(X,L);
 4 000012 4
 5 000016 5 VALUE X; REAL X; LABEL L;
 6 000016 6
 7 000021 B2 7 BEGIN REAL Y, Z;
 8 000025 8 IF X < 0 THEN GOTO L;
 9 000027 9 Y := (1 + X)/2;
 10 000043 10 IT: Z := (X/Y + Y)/2;
 11 000060 11 IF ABS(Z − Y) < 1&−6 THEN GOTO OK;
 12 000063 12 Y := Z; GOTO IT;
 13 000074 13 OK: SQUAREROOT := Z;
 14 000076 E2 14 END;
 15 000076 15
 16 000115 16 NG: WRITE("Number please: "); BREAK.OUTPUT;
 17 000117 17 READ(X);
 18 000122 18 Y := SQUAREROOT(X,NG);
 19 000127 19 WRITE("The square root of ");
 20 000132 20 PRINT(X);
 21 000135 21 WRITE(" is ");
 22 000140 22 PRINT(Y);
 23 000143 23 BREAK.OUTPUT;
 24 000145 E1 24 END;

 NO ERRORS

 ^LE−−−−1 PROGRAM
 B−−−−1 1
 B−−−−2 7
 E−−−−2 14
 E−−−−1 24
 ^LABS 11
 BREAKOUTPUT
 16 23
 IT 10# 12
 L 3# 5# 8

 5−9

 THE CREF PROGRAM

 NG 16# 18
 OK 11 13#
 PRINT 20 22
 READ 17
 SQUAREROOT
 3# 13 18
 WRITE 16 19 21
 X 1# 3# 5# 8 9 10 17 18 20
 Y 1# 7# 9 10 11 12 18 22
 Z 7# 10 11 12 13
 @

 5.4 CREF MESSAGES

 The messages printed by CREF fall into three general categories:
 informational messages, warning messages, and fatal errors.
 Informational messages are enclosed in square brackets [], and
 merely inform you of CREF’s progress in processing your file. Warning
 messages are preceded by a percent sign (%) and indicate that
 something unexpected occurred, but that CREF was able to recover. In
 this case, verify that your output is correct. Fatal errors are
 preceded by a question mark (?), and indicate an occurrence that CREF
 could not handle. In this case, CREF aborts its operation. You must
 fix the problem before reissuing your command string. The % and the ?
 preceding the message are easily detected in Batch jobs.

 Some of the messages contain variable information that is dependent on
 the exact command string, switch, or file you specified. These
 variables are as follows:

 [access] An octal code associated with a file access
 failure. For possible access failures, refer
 to Table 5−2 at the end of this section.

 [device] A device name.

 [file] A file spec.

 [memory] A memory size, such as 30K.

 [status] An octal code associated with a read or write
 error while processing a file. The meaning
 of this code is described in Table 5−3 at the
 end of this section.

 [switch] A switch name.

 The most common CREF messages are listed below alphabetically.

 ?CRFCDN Can’t get command file device [device]

 5−10

 THE CREF PROGRAM

 Description: CREF cannot access the named device in your
 indirect file command.

 Suggested User Response: Specify an existing or available
 device.

 ?CRFCEF Cannot ENTER file, [access] [file]

 Description: CREF could not create the specified file for the
 reason associated with the printed access code. (Refer to Table
 5−2.)

 Suggested User Response: Refer to Table 5−2 for corrective
 action that applies to the reason for the error.

 ?CRFCFE Command file INPUT error, [status] [file]

 Description: An input error occurred reading the named command
 file. For the meaning of the specified status code, refer to
 Table 5−3.

 Suggested User Response: Refer to Table 5−3 for corrective
 action that applies to the reason for the error.
 ?CRFCFF Cannot find file, [access] [file]

 Description: CREF cannot find the specified file for the reason
 associated with the printed access code. (Refer to Table 5−2.)

 Suggested User Response: Refer to Table 5−2 for corrective
 action that applies to the reason for the error.

 ?CRFCFI Cannot find input file, [file]

 Description: CREF cannot find the specified file. The reason
 can be any of those listed in Table 5−2.

 Suggested User Response: Refer to Table 5−2 for corrective
 action that applies to the reason for the error.

 ?CRFCLC Can’t LOOKUP command file [access] [file]

 Description: CREF cannot find the specified command file for the
 reason associated with the printed access code. (Refer to Table
 5−2.)

 Suggested User Response: Refer to Table 5−2 for corrective
 action that applies to the reason for the error.

 ?CRFCME Command error − type /H for help

 Description: You typed an invalid command.

 5−11

 THE CREF PROGRAM

 Suggested User Response: Retype the correct command or type /H
 for help.

 ?CRFDNA Device not available, [file]

 Description: You specified a device in the file specification
 that is not available to your job. It may be in use by another
 job.

 Suggested User Response: Specify a device that is available to
 your job.

 ?CRFIBP Input buffer size phase error − 0 [file]

 Description: The size of the buffer area set up by the system is
 larger than the size expected by CREF.

 Suggested User Response: This is an internal error, and not
 expected to happen. If it does, contact your Software Specialist
 or send a Software Performance Report (SPR) to DIGITAL.

 %CRFIDC Improper input data at line [decimal], continuing

 Description: CREF detected incorrect data in your input file.
 This is most likely a problem with the compiler that generated
 the CREF input file.

 Suggested User Response: First, be sure that you are processing
 a valid CREF input file. If so, this is an internal error, and
 not expected to happen. Try to re−create the .CRF file, since
 the data in the original one may have been corrupted. If the
 problem persists, contact your Software Specialist or send a
 Software Performance Report (SPR) to DIGITAL.
 ?CRFIMA Insufficient memory available

 Description: Your input file is too large for CREF to handle.

 Suggested User Response: Divide your program into smaller files
 and try again.

 ?CRFINE INPUT error, [status] [file]

 Description: An input error occurred reading the named file.
 For the meaning of the specified status code, refer to Table 5−3.

 Suggested User Response: Refer to Table 5−3 for corrective
 action that applies to the reason for the error.

 ?CRFOUE OUTPUT error, [status] [file]

 Description: An output error occurred writing the named file.
 For the meaning of the specified status code, refer to Table 5−3.

 5−12

 THE CREF PROGRAM

 Suggested User Response: Refer to Table 5−3 for corrective
 action that applies to the reason for the error.

 %CRFPUE Please use "=" rather than "_"

 Description: Older versions of CREF allowed only the use of an
 underbar ("_") to separate the input files from the output file.
 CREF currently allows either "=" or "_", but it is preferable for
 you to use "=". CREF acts as if you typed "=".

 Suggested User Response: Use "=" in the future.

 %CRFRLL Restart listing at line:

 Description: You specified /R to continue a listing. CREF is
 requesting the line number of the line to resume printing.

 Suggested User Response: Type the desired line number.

 %CRFSIH "/H" or "/R" switch illegal in SWITCH.INI defaulting

 Description: You specified /H or /R illegally in the CREF line
 in your SWITCH.INI file. CREF ignores these switches.

 Suggested User Response: Remove /H or /R from your SWITCH.INI
 file.

 %CRFSII Syntax error in SWITCH.INI defaults

 Description: The CREF commands in your SWITCH.INI file are
 invalid. CREF ignores them.

 Suggested User Response: Correct the invalid switches in your
 SWITCH.INI file.

 ?CRFSIO I/O error while reading SWITCH.INI

 Description: An input error occurred reading SWITCH.INI switch
 defaults. The reason for the failure can be any of those listed
 in Table 5−3.

 Suggested User Response: Refer to Table 5−3 for corrective
 action that applies to the reason for the error.
 ?CRFUKS Unknown switch "[switch]" {in DSK:SWITCH.INI}

 Description: You specified a nonexistent switch.

 Suggested User Response: Respecify the command string with a
 valid switch, or fix your SWITCH.INI file.

 [CRFXKC [memory] [core]

 5−13

 THE CREF PROGRAM

 Description: CREF finished its processing, and is informing you
 how much memory it used to process your CREF file.

 The octal codes listed in Table 5−2 appear in various CREF error
 messages, wherever [access] is used. The explanation beside each
 octal code describes the reason for the failure. Appropriate
 corrective action for each failure follows the explanation.

 Table 5−2: Reasons for File Access Errors

 __

 Octal Code Explanation/Action
 __

 0 File not found. The named file was not
 found by CREF. Specify an existing file.

 1 You specified a directory that does not
 exist. Specify an existing directory.

 2 Protection failure. You do not have
 sufficient privileges to access the named
 file. Negotiate the needed privileges with
 the system operator or the owner of the
 file.

 3 File being modified. Another job is
 currently modifying the named file. Try to
 access the file at another time or use a
 different filename.

 14 No room or quota exceeded. You exceeded
 the quota of the named directory, or the
 entire capacity of the file structure.
 Delete and expunge some of your files, or
 specify a directory or structure with
 sufficient space.

 15 Write−lock error. You requested an output
 file on a write−locked device, such as a
 magnetic tape. Either write−enable the
 device and try again, or specify another
 device.
 __

 The status code in various CREF error messages is an octal number that
 is best interpreted as bits. For example, if a CREF message prints
 the status code 40001, this means that you have exceeded your disk
 quota. The status code printed by CREF is the logical "OR" of all

 5−14

 THE CREF PROGRAM

 applicable bit values. Table 5−3 contains these status codes, their
 meanings, and the corresponding remedial action.

 Table 5−3: Error Status Codes

 __

 Status Code Meaning/Action
 __

 400000 The device is write−locked. Either specify
 a write−enabled device or ask the system
 operator to write−enable your device.

 200000 A hardware error occurred. The hardware is
 in error and should be fixed if the problem
 persists.

 100000 A parity error occurred. The data on the
 device is incorrect. Correct the data and
 try again.

 40000 Quota exceeded or structure full. You
 either exceeded your directory’s quota or
 the entire capacity of the structure.
 Delete and expunge some files or specify a
 structure or directory with sufficient
 space.
 __

 NOTE

 All other bit values (such as 20000 or 10) are simply
 status bits and do not indicate an error. Only those
 listed above indicate an error. Any other code simply
 indicates the status.

 5.5 TECHNICAL NOTES

 The information in this section is primarily for users who write their
 own compilers (such as MACRO, ALGOL, or FORTRAN) and users who create
 .CRF files. It describes the .CRF input file format and the various
 control characters that you use.

 The control characters in Tables 5−4 and 5−5 appear in the CREF input
 file produced by MACRO, FORTRAN and ALGOL. At the beginning of each
 line of the listing, CREF input data is enclosed by DELETE B and

 5−15

 THE CREF PROGRAM

 DELETE C. The symbol or instruction types and the number of their
 component characters are defined by control characters. The set of
 control characters defining symbols and instructions is the same as
 the set defining the number of symbol or instruction characters. A
 control character’s position determines its function. For example, in
 the input CREF data <DELETE>B^C^CEND<DELETE>c, the <DELETE>B indicates
 the beginning of the data. The first CTRL/C (^C) defines the
 instruction END as a pseudo−op code. The second CTRL/C (^C) defines
 the number of characters in the instruction END as 3, and the
 <DELETE>C terminates the CREF data.

 Symbols referenced in a block−structured language such as ALGOL should
 assign a unique number to each symbol name. This ensures that symbols
 with the same name but defined in different blocks have different
 numbers. Then, the number for each symbol should be referenced in
 CREF data rather than the name. After the last use of a symbol
 (usually at the end of its block), use CTRL/I to associate the
 symbol’s name with the unique number assigned to it.

 Control characters that require two symbols (such as CTRL/I) should
 have two adjacent length character and symbol name pairs.

 The control characters that begin and end the CREF input data are
 described in

 Table 5−4: Beginning and Ending Control Characters

 __

 Character ASCII Codes Meaning
 __

 A 177, 101 Terminates the CREF data on
 (prints as A) (Octal) each line and adds a
 horizontal tab to the line of
 the listing.

 B 177, 102 Signals beginning of the CREF
 (prints as B) data on each line.

 C 177, 103 Terminates the CREF data on
 (prints as C) each line. A line number is
 incremented and printed. This
 is the line number referenced
 in the CREF tables.

 D 177, 104 Identical to DELETE A, except
 (prints as D) that DELETE D does not
 increment or print line
 numbers.

 5−16

 THE CREF PROGRAM

 E 177, 105 Causes CREF to print its
 (prints as E) tables immediately, and
 reinitializes the tables for
 another program. FORTRAN uses
 this function between
 subroutines.

 F 177, 106 Identical to DELETE C, except
 (prints as F) that DELETE F does not
 increment or print line
 numbers.
 __

 Table 5−5 contains the control characters that define symbols,
 instruction types, and macros. Except for CTRL/B and CTRL/G, each of
 these characters precedes the symbol name being referenced.

 Table 5−5: Symbol−Definition Control Characters

 __

 Character ASCII Code Meaning
 __

 CTRL/A (^A) 001 Declares a reference to a
 user−defined symbol (such as a
 regular MACRO symbol or a
 FORTRAN variable).

 CTRL/B (^B) 002 Declares a defining occurrence
 of a user−defined symbol.
 This character immediately
 follows the symbol name.

 CTRL/C (^C) 003 Declares a reference to a
 MACRO pseudo−op or a
 hardware−defined op code.

 CTRL/D (^D) 004 Declares a defining occurrence
 of a MACRO pseudo−op or a
 hardware−defined op code.

 CTRL/E (^E) 005 Declares a reference to a
 MACRO or OPDEF.

 CTRL/F (^F) 006 Declares a defining occurrence
 of a MACRO or OPDEF.

 CTRL/G (^G) 007 Causes CREF to delete the last
 symbol that it read.

 5−17

 THE CREF PROGRAM

 CTRL/H (^H) 010 Combines two symbols that are
 defined at different block
 levels and are then found to
 be the same. The second
 symbol specified becomes the
 name for both. For example,
 in a one−pass block−structured
 compiler that allows symbol
 references before their
 definition, a symbol
 referenced in an inner block
 must be treated as a unique
 symbol until the end of the
 block. If no local definition
 is found, this symbol’s
 references must then be
 combined with an outer block’s
 references.

 CTRL/I (^I) 011 Declares the user−defined
 symbol by giving it a name in
 place of the unique numeric.
 The numeric is the first
 argument, and its name is the
 second argument.

 CTRL/J (^J) 012 Illegal in CREF as a symbol
 definition control character.

 CTRL/K (^K) 013 Identical to CTRL/I, except
 that it operates on macros
 rather than on symbols.

 CTRL/L (^L) 014 Illegal in CREF.

 CTRL/M (^M) 015 Declares the beginning of a
 symbol block. The argument is
 the block name.

 CTRL/N (^N) 016 Declares the end of a symbol
 block. The argument is the
 block name.

 CTRL/O (^O) 017 Declares a line number to use
 in place of the line’s actual
 position in the file. The
 line number is specified after
 the CTRL/O in the same format
 as other symbols.
 __

 5−18

 THE CREF PROGRAM

 The octal value of each character described in Table 5−6 is used by
 CREF to determine the number of characters in a symbol name. The same
 set of characters defines the symbol as well as its number of
 characters. The character’s position determines its function. The
 character−count character immediately precedes the symbol with no
 intervening spaces or characters (^CEND, for example). Table 5−6
 contains the characters and their meanings.

 Table 5−6: Character−Count−Definition Characters

 __

 Character ASCII Code Meaning
 __

 CTRL/A (^A) 001 (octal) The symbol contains 1
 character.

 CTRL/B (^B) 002 The symbol contains 2
 characters.

 CTRL/C (^C) 003 The symbol contains 3
 characters.
 : : :
 : : :
 : : :
 ? 077 The symbol contains 63
 characters.
 __

 The following example illustrates the symbols and references
 recognized by CREF that you can make in an Assembly Language Program.
 The control characters show the references that are made to particular
 symbols.

 Source File CREFD.MAC:

 TITLE CREFD CREF Example
 SUBTTL Show Internal CREF Information

 SEARCH MACSYM, MONSYM ;Pseudo−op reference

 CONST=17 ;Symbol definition

 DEFINE MACRO(X)< ;;Pseudo−op reference, macro definition (in−line)
 OPCODE X ;OPDEF and symbol reference (when expanded)
 >

 OPDEF OPCODE[MOVEI] ;Pseudo−op reference, OPDEF definition and
 ; opcode reference

 5−19

 THE CREF PROGRAM

 START: MACRO CONST ;Symbol and macro reference

 END START ;Pseudo−op and symbol reference
 .CRF File CREFD.CRF:

 NOTE

 In this printout of a .CRF File, DELETE characters are
 designated as follows:

 DELETE B = ^?B

 ^LCREFD CREF Example MACRO %53A(1152) 13:44 10−Sep−79 Page 1
 CREFD MAC 10−Sep−79 13:44 Show Internal CREF Information

 ^?B^C^ETITLE^?C TITLE CREFD CREF Example
 ^?B^C^FSUBTTL^?C SUBTTL Show Internal CREF Information
 ^?B^?C
 ^?B^C^FSEARCH^?C SEARCH MACSYM, MONSYM ;Pseudo−op reference
 ^?B^?C
 ^?B^A^ECONST^B^?C 000017 CONST=17 ;Symbol definition
 ^?B^?C
 ^?B^C^FDEFINE^F^EMACRO^?C DEFINE MACRO(X)< ;;Pseudo−op reference, macro definition
 (in−line)
 ^?B^?C OPCODE X ;OPDEF and symbol reference (when expanded)
 ^?B^?C >
 ^?B^?C
 ^?B^C^EOPDEF^C^EMOVEI^F^FOPCODE^?C 201000 000000 OPDEF OPCODE[MOVEI] ;Pseudo−op refe
rence, OPDEF definition and
 ^?B^?C ; opcode reference
 ^?B^?C
 ^?B^A^ESTART^B^E^EMACRO^?C 000000’ START: MACRO CONST ^;Symbol and macro reference
 ^?B^E^FOPCODE^A^ECONST^?C 000000’ 201 00 0 00 000017 OPCODE CONST ;OPDEF and symbol
reference (when expanded)
 ^?B^?C
 ^?B^C^CEND^A^ESTART^?C 000000’ END START ;Pseudo−op and symbol reference

 NO ERRORS DETECTED

 PROGRAM BREAK IS 000001
 CPU TIME USED 00:00.904

 67P CORE USED
 ^LCREFD CREF Example MACRO %53A(1152) 13:44 10−Sep−79 Page S−1
 CREFD MAC 10−Sep−79 13:44 SYMBOL TABLE

 CONST 000017
 OPCODE 201000 000000
 START 000000’
 The following is an example of a listing you receive after running
 CREF with the preceding .CRF file:

 ^LCREFD CREF Example MACRO %53A(1152) 13:58 10−Sep−79 Page 1
 CREFD MAC 10−Sep−79 13:44 Show Internal CREF Information

 5−20

 THE CREF PROGRAM

 1 TITLE CREFD CREF Example
 2 SUBTTL Show Internal CREF Information
 3
 4 SEARCH MACSYM, MONSYM ;Pseudo−op reference
 5
 6 000017 CONST=17 ;Symbol definition
 7
 8 DEFINE MACRO(X)< ;;Pseudo−op reference, macro definition (in−line)
 9 OPCODE X ;OPDEF and symbol reference (when expanded)
 10 >
 11
 12 201000 000000 OPDEF OPCODE[MOVEI] ;Pseudo−op reference, OPDEF definition and
 13 ; opcode reference
 14
 15 000000’ START: MACRO CONST ^;Symbol and macro reference
 16 000000’ 201 00 0 00 000017 OPCODE CONST ;OPDEF and symbol reference (when exp
anded)
 17
 18 000000’ END START ;Pseudo−op and symbol reference

 NO ERRORS DETECTED

 PROGRAM BREAK IS 000001
 CPU TIME USED 00:00.873

 67P CORE USED
 ^LCREFD CREF Example MACRO %53A(1152) 13:58 10−Sep−79 Page S−1
 CREFD MAC 10−Sep−79 13:44 SYMBOL TABLE

 CONST 000017
 OPCODE 201000 000000
 START 000000’

 ^LCONST 6# 16
 START 15# 18

 ^LMACRO 8# 15
 OPCODE 12# 16

 ^LDEFINE 8
 END 18
 MOVEI 12
 OPDEF 12
 SEARCH 4
 SUBTTL 2
 TITLE 1

 5−21

 6−1

 CHAPTER 6

 THE MAKLIB PROGRAM

 6.1 INTRODUCTION

 The MAKLIB program organizes and manipulates files of relocatable
 object (REL) modules. These REL modules are the output from a source
 language translator, such as the FORTRAN compiler or the MACRO
 assembler.

 At load time, the modules are linked together to build an executable
 program. As shown in Figure 6−1, the MACRO assembler processes two
 source files, X.MAC and Y.MAC, and produces two corresponding .REL
 files, X.REL and Y.REL. The LINK program then loads the resulting
 object modules from these .REL files and produces an executable
 program, Z.EXE.

 Figure 6−1: Figure Generation of an .EXE File

 : :
 X.MAC −−−−−−>: :−−−−−−>X.REL Loader
 :........: \ (LINK)
 Compiler \
 Source or \ : :
 Files Assembler / : :−−−−−−>Z.EXE
 / :.......:
 : : /
 Y.MAC −−−−−−>: :−−−−−−>Y.REL
 :........:

 Multiple modules can be concatenated into a single file called a
 library. A file containing a single module can also be called a
 library. (See Figure 6−2.)

 6−1

 THE MAKLIB PROGRAM

 Figure 6−2: Generation of a Library

 : X.REL :
 : () :
 :........:\
 \ : LIB.REL :
 \: MAKLIB : −−−−−−−−>: () () :
 /:..........: :..........:
 /
 /

 : Y.REL :
 : () :
 :........:

 MAKLIB performs four functions on library files. Each function has
 switches that cause the MAKLIB program to do a specific task. The
 four functions are:

 Obtaining Information about Libraries

 These switches cause MAKLIB to give information about the status
 and contents of the library.

 Manipulating Libraries

 These switches cause MAKLIB to create new libraries by combining
 modules. Other switches cause MAKLIB to add, delete, extract, or
 replace modules.

 Modifying Libraries

 These switches cause MAKLIB to create new libraries from existing
 libraries, either by adding an index or removing local symbols.
 By modifying libraries you can reduce the amount of processing
 time required by the LINK program.

 Editing Libraries

 These switches cause MAKLIB to edit (or patch) modules within the
 library. You selectively change the object code in a module by
 supplying MAKLIB with the required MACRO assembly language code
 changes.

 For more information on the contents of .REL files and REL Block
 types, refer to the TOPS−20 LINK Reference Manual. For more
 information on MACRO assembly language, refer to the TOPS−20 MACRO
 ASSEMBLER Reference Manual.

 6−2

 THE MAKLIB PROGRAM

 6.2 RUNNING MAKLIB

 To run MAKLIB, type MAKLIB after the TOPS−20 prompt @ and press the
 RETURN key. The program prompts you with an asterisk:

 @ MAKLIB<RET>
 *

 After this prompt, enter a command string. MAKLIB takes commands in
 the following format:

 Destination file spec=Source file spec1/Switches,Source file
 spec2/Switches... Source file specn/Switches

 where:

 Destination file spec is the output file that MAKLIB produces.
 It can be either a text file or a library, depending upon the
 function you perform.

 If you do not specify a Destination filename, MAKLIB uses the name of
 the file in Source file spec1. If you omit the Destination file type,
 the default depends on the function you perform.

 Source file spec1 is the master library. This file spec is
 always required in a MAKLIB command string.

 You must specify a filename in Source file spec1. The default file
 type is always .REL.

 Source file spec2 ...Source file specn are the transaction files.
 These are additional input files required to perform some MAKLIB
 functions. A function usually requires only one transaction
 file.

 You include switches in the command string to instruct MAKLIB to
 perform a specific function. You specify switches in one of the
 following formats:

 /Switch
 /Switch:argument
 /Switch:(arg1,arg2...argn)

 You can perform only one action with a switch in a single command
 string, but MAKLIB allows up to 100 switch arguments for each command
 string.

 You can use MAKLIB switches in abbreviated form as long as they remain
 unique. However, arguments to switches are usually module names and
 hence cannot be abbreviated. Parentheses are optional when you
 specify only one argument, but are required to enclose two or more
 switch arguments.

 6−3

 THE MAKLIB PROGRAM

 Table 6−1 is an alphabetical list of the MAKLIB switches; they are
 discussed in detail in Sections 6.2.1 through 6.2.4.

 You can use an indirect file in a MAKLIB command string to reference
 another file. The indirect file can contain a complete or partial
 MAKLIB command string (filenames and switches). For more information
 on using indirect files, refer to the TOPS−20 User’s Guide.

 If you always want to use specific switches when you run MAKLIB, you
 can put these switches in a SWITCH.INI file. For more information on
 creating a SWITCH.INI file, refer to the TOPS−20 User’s Guide.

 MAKLIB allows you to type a string of commands on one or more lines.
 If the command string takes more than one line, type a hyphen (−) at
 the end of the first line, and press RETURN. Then, when MAKLIB
 prompts with a pound sign (#), continue to type the command string on
 the next line. You can also use multi−line commands in an indirect
 file.

 To exit from MAKLIB and return to TOPS−20 command level, type either
 /EXIT or CTRL/Z after the asterisk prompt.

 6.2.1 Running MAKLIB to Obtain Information About Libraries

 MAKLIB contains four switches that allow you to obtain information on
 the status and contents of the master library (first input file). The
 four switches are: /LIST, /POINTS, /TRACE, and /LOAD.

 Command String Requirements −

 Files: A master library and an output file are
 required in the command string for each of
 the four switches. None of the command
 strings require a transaction file.

 Default file type: Output file type − .LST
 Master library type − .REL

 Arguments: (Modules affected by the switch) − None

 The output file (.LST) is a text file that can be written to any
 output device that supports text files, such as TTY: or LPT:. The
 discussion of /POINTS in this section illustrates the use of this
 option.

 /LIST − LIST Switch

 This switch lists the names of the modules that are contained in
 the master library. In addition to the names, MAKLIB also lists
 the two data values from the END block (REL Block type 5) of the

 6−4

 THE MAKLIB PROGRAM

 module. If the module is a two−segment program, the first value
 is the high−segment break, and the second value is the
 low−segment break. If the module is a one−segment program, the
 first value is the program break, and the second value is the
 absolute break. If the second value is zero, it is not printed.

 For example, if you want to create a file, REAP.LST, showing the
 names of all modules in the library IAGO.REL, give the following
 command string:

 @ MAKLIB<RET>
 * REAP.LST=IAGO.REL/LIST<RET>
 *

 When MAKLIB finishes the task you request, it prompts you with
 another asterisk. You can now enter another command string.

 You get the following when you type the new file:

 @ TYPE (FILE) REAP.LST<RET>
 Listing of Modules
 Produced by MAKLIB Version 2B () on 12−Dec−81 at 14:02:41

 DSK:IAGO.REL[4,244] created on 8−Dec−81 at 14:32:00

 IAGO 401725 023746
 @

 The output file REAP.LST shows that the file IAGO.REL contains
 one module named IAGO. This module is a two−segment program.
 The first value listed, 401725, is the high−segment break. The
 second value listed, 023746, is the low−segment break.

 /POINTS − POINTS Switch

 This switch lists all entry points in the specified library.
 Entry points are usually subroutine starting addresses. They are
 used by the LINK program to determine if a global request can be
 satisfied by loading a module from a library.

 For example, if you want to know all the entry points in the
 library NICE.REL and have the output written to the device TTY:
 (your terminal), do the following:

 @ MAKLIB<RET>
 * TTY:=NICE.REL/POINTS<RET>
 Listing of Modules and Entry Points
 Produced by MAKLIB Version 2B () on 12−Dec−81 at 16:33:45

 6−5

 THE MAKLIB PROGRAM

 DSK:NICE.REL[4,244] created on 12−Dec−81 at 16:11:00

 NICE BEGIN LOOP NICE
 *

 In this example, the output shows that the library NICE.REL
 contains one module, NICE, which has three entry points: BEGIN,
 LOOP, and NICE. After the output, MAKLIB returns with the
 asterisk prompt and waits for another command string.

 /TRACE − TRACE Switch

 This switch lists all the edits you have made to a library. This
 information is contained in the TRACE blocks in the specified
 library. MAKLIB creates these TRACE blocks (REL Block type 1060)
 when you use /FIX to edit a module in the library. The TRACE
 blocks contain information about the edits you insert and the
 changes you make to the library. For more information on TRACE
 blocks, refer to Section 6.5. /TRACE allows you to determine the
 exact binary patching status of the library.

 For example, if you want to see all the edits in the library
 OLDLIB.REL, and have the output written to the device TTY:, do
 the following:

 @ MAKLIB<RET>

 * TTY:=OLDLIB.REL/TRACE<RET>
 Listing of TRACE blocks
 Produced by MAKLIB Version 2B() on 10−Dec−81 at 9:33:59

 DSK:OLDLIB.REL[4,601] created on 1−Dec−81 at 9:31:00

 Module: SORT Edit: 341
 Status is Active
 Last affected by DRB
 Created by HAS On 2−Dec−81
 Installed by DRB On 10−Dec−81
 Program changes:
 Inserts 4 instruction(s) at location 001046

 This example shows that the module SORT in the library OLDLIB.REL
 has one edit inserted. The status of the edit is active. You
 can change the status of a particular edit with the .REMOVE or
 .REINSERT pseudo−ops. The example also shows that the edit was
 last affected by DRB. This information comes from /WHO when you
 install or change an edit. The edit was created by HAS on
 2−Jun−79. This information comes from the .NAME and .DATE
 pseudo−ops, respectively. The edit was installed by DRB on
 10−Jul−79. This information comes from /WHO and the date that

 6−6

 THE MAKLIB PROGRAM

 the system supplies when you install an edit. For more
 information on these pseudo−ops and /WHO, refer to Section 6.2.4.

 /LOAD − LOAD Switch

 This switch shows additional loading instructions that are
 embedded within the library in either REQUEST (REL Block type
 17), REQUIRE (REL Block type 16), or ASCII text blocks.

 The library QUICK.REL was produced from a MACRO program
 containing the following statements:

 TITLE QUICK
 .TEXT "/VERSION:2(111)"
 .REQUEST SYS:FORLIB
 .REQUIRE SYS:MACREL

 To see the additional loading instructions embedded within
 QUICK.REL in the blocks, do the following:

 @ MAKLIB<RET>
 * TTY:=QUICK.REL/LOAD<RET>
 Listing of Internal loading instructions
 Produced by MAKLIB Version 2B() on 10−Dec−81 at 9:06:23

 DSK:QUICK.REL[4,601] created on 6−Dec−81 at 13:28:00

 Module: QUICK
 Text string: /VERSION:2(111)
 Requests SYS:FORLIB
 Requires SYS:MACREL

 6.2.2 Running MAKLIB to Manipulate Libraries

 For handling and creating libraries, MAKLIB includes six switches that
 allow you to work with individual modules within libraries. The six
 switches are: /MASTER, /APPEND, /DELETE, /EXTRACT, /INSERT, and
 /REPLACE.

 Command String Requirements −

 Files: A master library (first input file) and an
 output file are required in the command
 string for each of the six switches. A
 transaction file is required with some
 switches.

 Default file type: .REL for all files

 6−7

 THE MAKLIB PROGRAM

 Arguments: All switches accept arguments. /APPEND and
 /INSERT are two switches that do not always
 require arguments. For more information,
 refer to the discussions of these two
 switches in this section.

 /MASTER − MASTER Switch

 This switch identifies modules within the master library that
 correspond to those in the transaction file being used to effect
 the update. /MASTER takes at least one argument, and requires
 that another switch be given in the same command string. It is
 the only switch within this function that causes no real
 manipulation of a library. It is mentioned here because some of
 the switches used to manipulate libraries require /MASTER in
 their respective command strings.

 You include /MASTER in the command strings for only two switches,
 /INSERT and /REPLACE. These switches are discussed later in this
 section.

 /APPEND − APPEND Switch

 This switch adds new modules to the end of an existing library.
 The output file is the master library plus the appended modules.
 MAKLIB reads these appended modules from the transaction file.
 You specify them as arguments to the switch. You must specify
 modules as arguments in the same physical order as they occur in
 the transaction file. Figure 6−3 illustrates the function of
 /APPEND. Note that, in the figure, modules D and E from the
 transaction file are appended to the master library.

 Figure 6−3: Function of /APPEND

 6−8

 THE MAKLIB PROGRAM

 : Module A : : Module D :
 : Module B : : Module E :
 : Module C : :..........:
 :..........: / Transaction
 Master \ / File
 Library \ /
 \ /
 \ /
 \/

 : MAKLIB :
 : /APPEND:(D,E) :
 :...............:
 |
 |

 : Module A :
 : Module B :
 : Module C : Output
 : Module D : File
 : Module E :
 :..........:

 NOTE

 When you do not specify an argument to /APPEND,
 the entire transaction file is appended to the
 master library.

 For example, you want to append the module IAGO in the library
 IAGO.REL to the library GRAF.REL. You name the output file
 EXEN.REL. The command string is:

 @ MAKLIB<RET>
 * EXEN.REL=GRAF.REL,IAGO.REL/APPEND:IAGO<RET>
 *

 MAKLIB returns with the asterisk prompt for you to enter another
 command string. To check the new file, use /LIST and have the
 output written to the device TTY:.

 * TTY:=EXEN.REL/LIST<RET>
 Listing of Modules
 Produced by MAKLIB Version 2B() on 14−Dec−81 at 10:45:13

 DSK:EXEN.REL[4,244] created on 14−Dec−81 at 10:43:00

 CRIG 004582

 6−9

 THE MAKLIB PROGRAM

 PASZ 003217
 TENP 036651
 IAGO 402420 023746
 *

 The example shows that the new file, EXEN.REL, contains four
 modules: the three modules from the library GRAF.REL (CRIG,
 PASZ, TENP), and the appended module IAGO.

 /APPEND also allows you to initially create a library. For
 example, you wish to combine the following four .REL files into a
 single library:

 GLOBAL.REL
 DTABLE.REL
 INOUT.REL
 IO.REL

 Type the following MAKLIB command string to produce the file
 LIB.REL, which contains all modules from the four specified
 files:

 @ MAKLIB<RET>
 * LIB=GLOBAL,DTABLE/APPEND,INOUT/APPEND,IO/APPEND<RET>
 *

 In this example, MAKLIB copies the file GLOBAL to a file named
 LIB, and then appends all modules from the files DTABLE, INOUT,
 and IO to LIB. This also illustrates the use of more than one
 transaction file.

 /DELETE − DELETE Switch

 This switch removes one or more modules from an existing library.
 The output file is the master library minus the deleted
 module(s). All modules, except those specified as arguments to
 /DELETE, are read from the master library and copied to the
 output file. No transaction file is required.

 NOTE

 You must specify modules as arguments in the same
 physical order as they occur in the master library.

 Figure 6−4 illustrates the function of /DELETE. Note that, in the
 figure, module B is deleted from the master library.

 Figure 6−4: Function of /DELETE

 6−10

 THE MAKLIB PROGRAM

 : Module A :
 : Module B : Master
 : Module C : Library
 :..........:
 \
 \
 \.......
 : MAKLIB :
 : /DELETE:B :
 :............:
 /
 /
 /

 Output : Module A :
 File : Module C :
 :..........:

 Type the following command string to delete the module TENP from
 the library EXEN.REL. The output filename is DIPEP.REL.

 @ MAKLIB<RET>
 * DIPEP.REL=EXEN.REL/DELETE:(TENP)<RET>
 *

 The program returns with the asterisk prompt for you to enter
 another command string. To check the new file, use /LIST and
 have the output written to the device TTY:.

 *TTY:=DIPEP.REL/LIST<RET>
 Listing of Modules
 Produced by MAKLIB Version 2B() on 14−Dec−81 at 14:10:41

 DSK:DIPEP.REL[4,244] created on 14−Dec−81 at 14:10:00

 CRIG 004582
 PASZ 003217
 IAGO 402420 023746
 *

 /EXTRACT − EXTRACT Switch

 This switch produces an output file that is a subset of modules
 in the master library. You specify the modules as arguments to
 the switch. No transaction file is required.

 6−11

 THE MAKLIB PROGRAM

 NOTE

 You must specify the modules as arguments in the same
 physical order as they occur in the master library.

 Figure 6−5 illustrates the function of /EXTRACT. Note that, in
 the figure, module A is extracted from the master library.

 Figure 6−5: Function of /EXTRACT

 : Module A : Master
 : Module B : Library
 : Module C :
 :..........:
 |
 |

 : MAKLIB :
 : /EXTRACT:A :
 :............:
 |
 |

 : Module A : Output
 :..........: File

 The following example illustrates /EXTRACT. The library FOO.REL
 contains four modules. To get a listing of the module names, use
 /LIST and have the output written to the device TTY:.

 @ MAKLIB<RET>
 * TTY:=FOO.REL/LIST<RET>
 Listing of Modules
 Produced by MAKLIB Version 2B() on 18−Dec−81 at 14:37:45

 DSK:FOO.REL[4,244] created on 18−Dec−81 at 13:54:00

 SQUARE 000023
 BOX 000014
 MAIN 000433
 DRAW 000505
 *

 You want to extract two of these modules, SQUARE and BOX, from
 the library FOO.REL, and put them in a new library, 2FOO.REL.
 After using /EXTRACT, check on the new file with /LIST, and have

 6−12

 THE MAKLIB PROGRAM

 the output written to the device TTY:. Type the MAKLIB command
 string after the asterisk prompt:

 * 2FOO.REL=FOO.REL/EXTRACT:(SQUARE,BOX)<RET>
 * TTY:=2FOO.REL/LIST<RET>
 Listing of Modules
 Produced by MAKLIB Version 2B() on 18−Dec−81 at 14:57:17

 DSK:2FOO.REL[4,244] created on 18−Dec−81 at 14:56:00

 SQUARE 000023
 BOX 000014
 *

 The example shows that the new library, 2FOO.REL, contains the
 two modules that you extracted from the master library, FOO.REL.

 /INSERT − INSERT Switch

 This switch inserts new modules into a master library. /MASTER
 is required in the command string. The output file is formed as
 follows: MAKLIB copies the master library to the output file up
 to but not including the module named as the first argument to
 /MASTER. Next, MAKLIB copies the module named as the first
 argument to /INSERT from the transaction file to the output file.
 The process repeats until the argument list specified to /MASTER
 and /INSERT is exhausted. At this point, MAKLIB copies the
 remaining modules in the master library to the output file.
 There must be one argument to /MASTER for every argument to
 /INSERT.

 NOTE

 You must specify the module names in the argument
 lists for /MASTER and /INSERT in the same physical
 order as they occur in the master library and the
 transaction file, respectively. When you do not
 specify an argument to /INSERT, the entire transaction
 file is inserted before the module you specify to
 /MASTER. You must always specify an argument to
 /MASTER.

 Figure 6−6 illustrates this function of /INSERT. Note that, in
 the figure, module X in the transaction file is inserted before
 module B in the master library.

 6−13

 THE MAKLIB PROGRAM

 Figure 6−6: One Function of /INSERT

 : Module A :
 : Module B :
 : Module C : : Module X :
 :..........: :...........
 Master \ / Transaction
 Library \ / File
 \ /
 \ /
 \.../....
 : MAKLIB :
 : /INSERT:X :
 :...........:
 |
 |

 : Module A :
 : Module X : Output
 : Module B : File
 : Module C :
 :..........:

 For example, the library FOO.REL contains four modules: SQUARE,
 BOX, MAIN, and DRAW. The library NICE.REL contains one module,
 NICE. You want to insert the module NICE before the module BOX
 in FOO.REL. The name of the output file containing the five
 modules is CLAR.REL. The command string to insert this module is
 as follows:

 @ MAKLIB<RET>
 * CLAR.REL=FOO.REL/MASTER:BOX,NICE.REL/INSERT:NICE<RET>
 *

 MAKLIB returns with the asterisk prompt. You can now check on
 the new library, CLAR.REL, with /LIST. The output from /LIST is
 written to the device TTY:

 * TTY:=CLAR.REL/LIST<RET>
 Listing of Modules
 Produced by MAKLIB Version 2B() on 27−Dec−81 at 15:40:28

 DSK:CLAR.REL[4,244] created on 27−Dec−81 at 15:40:00

 SQUARE 000023
 NICE 005557

 6−14

 THE MAKLIB PROGRAM

 BOX 000014
 MAIN 000433
 DRAW 000505
 *

 You may also insert more than one module in front of a module in
 a master library. However, the master library module name must
 appear repeatedly in the argument list to /MASTER. This produces
 a one−to−one correspondence between the module in the master
 library and the modules you wish to insert. In this case, you
 must list the argument names for both /MASTER and /INSERT in the
 same physical order that they appear as modules in the master
 library and transaction file, respectively.

 Figure 6−7 illustrates this function of /INSERT. Note that, in
 the figure, modules X and Y in the transaction file are inserted
 before module B in the master library.

 Figure 6−7: One Function of /INSERT

 : Module A :
 : Module B : : Module Y :
 : Module C : : Module X :
 :..........: :...........
 Master \ / Transaction
 Library \ / File
 \ /
 \ /
 \..../.....
 : MAKLIB :
 : /INSERT:X,Y :
 :.............:
 |
 |

 : Module A :
 : Module X : Output
 : Module Y : File
 : Module B :
 : Module C :
 :..........:

 For example, the library SFJA.REL contains two modules: ILJA,
 and HLBET. The library FOO.REL contains four modules: SQUARE,
 BOX, MAIN, DRAW. You want to insert both modules in SFJA.REL in
 the library FOO.REL, before the module DRAW. The name of the new
 library is SFOO.REL. The command string is:

 6−15

 THE MAKLIB PROGRAM

 @ MAKLIB<RET>
 * SFOO.REL=FOO.REL/MASTER:(DRAW,DRAW),SFJA.REL/INSERT:(ILJA,HLBET)<RET>

 *

 After the asterisk prompt, check on the contents of the new
 library, SFOO.REL, with /LIST and have the output written to the
 device TTY:.

 * TTY:=SFOO.REL/LIST<RET>
 Listing of Modules
 Produced by MAKLIB Version 2B() on 28−Dec−81 at 16:30:22

 DSK:SFOO.REL[4,244] created on 28−Dec−81 at 16:30:00

 SQUARE 000023
 NICE 005557
 BOX 000014
 MAIN 000433
 ILJA 001047
 HLBET 000433
 DRAW 000505
 *

 /REPLACE − REPLACE Switch

 This switch replaces modules in the master library with those
 specified in the transaction file. /MASTER is required in the
 command string so that the program can identify the modules in
 the master library that are to be replaced by those named as
 arguments to /REPLACE. There must be a one−to−one correspondence
 between the number of arguments to /MASTER and /REPLACE.

 The output file is the entire master library, with modules
 replaced by those read from the transaction file (and named as
 arguments to the switch).

 NOTE

 You must specify the names in both argument lists
 (/MASTER and /REPLACE) in the same physical order as
 they appear as modules in the master library and
 transaction file, respectively.

 Figure 6−8 illustrates the function of /REPLACE. Note that
 module X in the transaction file replaces module B in the master
 library.

 6−16

 THE MAKLIB PROGRAM

 Figure 6−8: Function of /REPLACE

 : Module A :
 : Module B :
 : Module C : : Module X :
 :..........: :...........
 Master \ / Transaction
 Library \ / File
 \ /
 \ /
 \.../.....
 : MAKLIB :
 : /REPLACE:X :
 :............:
 |
 |

 : Module A :
 : Module X : Output
 : Module C : File
 :..........:

 For example, the library FOO.REL contains four modules: SQUARE,
 BOX, MAIN, and DRAW. The library NICE.REL contains one module,
 NICE. You want to replace the module MAIN in FOO.REL with the
 module NICE in NICE.REL. The output file name is WELW.REL. The
 command string is the following:

 @ MAKLIB<RET>
 * WELW.REL=FOO.REL/MASTER:MAIN,NICE.REL/REPLACE:NICE<RET>
 *

 After MAKLIB completes the action you requested, it prompts you
 with an asterisk. Now check on the contents of the new library,
 WELW.REL, with /LIST and have the output written to the device
 TTY:.

 * TTY:=WELW.REL/LIST<RET>
 Listing of Modules
 Produced by MAKLIB Version 2B() on 6−Dec−81 at 14:49:22

 DSK:WELW.REL[4,244] created on 6−Dec−81 at 14:48:00

 SQUARE 000023
 BOX 000014
 NICE 005557
 DRAW 000505

 6−17

 THE MAKLIB PROGRAM

 *

 NICE replaced MAIN in the master library FOO.REL. The new
 library, WELW.REL, contains the four modules: SQUARE, BOX, NICE,
 and DRAW.

 6.2.3 Running MAKLIB to Modify Libraries

 The two switches within this function facilitate the processing of
 requests by the LINK program when it loads modules from libraries.
 The two switches are: /INDEX and /NOLOCALS.

 Command String Requirements −

 Files: A master library (first input file) and an
 output file are required in the command
 string for both switches. Transaction files
 are not allowed. Both switches appear with
 the master library in the command string.

 Default file type: .REL for both the master library and the
 output file for both switch command strings.

 Arguments: None

 /INDEX − INDEX Switch

 This switch produces an output file, which is identical to the
 master library, except with INDEX blocks (REL Block type 14)
 inserted in the file. Normally, programs make external requests
 to library subroutines they need, and LINK must search completely
 through the library to decide which modules to load to satisfy
 the requests. INDEX blocks list the entry point names and
 corresponding modules, allowing LINK to quickly determine which
 modules to load. LINK searches more efficiently, and loading
 time is shorter because the amount of I/O is reduced.

 /NOLOCALS − NOLOCALS Switch

 This switch produces an output file which is the master library
 with all local symbols deleted from the file SYMBOL blocks (REL
 Block type 2). Local symbols are useful for debugging purposes,
 and also when modules are edited with MAKLIB. (Refer to FIX
 files, Section 6.2.4.) In a production−mode library, local
 symbols are usually deleted, because they serve no purpose. This
 reduces the amount of mass storage space the library occupies.
 In addition, loading time is faster because the amount of I/O is
 reduced. Global symbols are not deleted because they are used in
 the linking of modules.

 6−18

 THE MAKLIB PROGRAM

 In the following example you create a new library, L2, from L1.
 The new library has an index but no local symbols. You can use
 /INDEX and /NOLOCALS together in the command string.

 @ MAKLIB<RET>
 * L2=L1/NOLOCALS/INDEX<RET>
 *

 6.2.4 Running MAKLIB to Edit Libraries

 MAKLIB provides a mechanism for you to patch (or edit) the code of a
 relocatable object module. This patching facility allows you to make
 program changes directly to a library. Although MAKLIB provides the
 facility for editing a program without having to change the source
 code, good programming practice requires that the same edits also be
 made at the source level.

 To edit a library in this way, you must first create a text file
 called a .FIX file. This .FIX file contains one or more edits that
 you want to insert in the library. Each edit has a unique identifier
 and consists of a sequence of control pseudo−ops and MACRO assembly
 language code. The control pseudo−ops tell MAKLIB where and how to
 make the changes. Any new code is supplied as a sequence of MACRO
 assembly language statements. Each edit begins with an .EDIT
 pseudo−op and ends with an .ENDE pseudo−op. Figure 6−9 shows the
 order that pseudo−ops must appear within an edit.

 When MAKLIB processes the .FIX file, it creates a new library with any
 new edits inserted. Although each edit is now a permanent part of the
 library, you can use MAKLIB to deactivate an edit. This operation
 effectively removes any code changes inserted by the edit. Therefore,
 edits in the library can be either active or inactive.

 MAKLIB maintains edit history information on the library by generating
 TRACE blocks (REL Block type 1060) for each edit you insert. TRACE
 blocks are part of the module. Therefore, when you use /REPLACE,
 /EXTRACT, or /DELETE, the TRACE blocks move with the module. Section
 6.2.1 describes how you can determine the edit status of the library
 using /TRACE.

 NOTE

 MAKLIB does not handle PSECTS.

 Pseudo−ops for .FIX files

 .EDIT xxxxxx − This pseudo−op is an identifying name for the edit
 you insert in the specified module. The edit name (xxxxxx) can

 6−19

 THE MAKLIB PROGRAM

 be up to six (6) SIXBIT characters and is stored in the TRACE
 block for any module affected by the edit. .EDIT is the first
 pseudo−op for each edit.

 .DATE dd−mmm−yy − This pseudo−op gives the date that the edit was
 made. The day (dd) and year (yy) entries are numeric. The month
 entry (mmm) is alphabetic. .DATE is an optional pseudo−op. If
 you supply this information, it is stored in the edit TRACE
 block.

 .NAME xxx − This pseudo−op gives the three initials (xxx) of the
 person who wrote the edit. .NAME is an optional pseudo−op. If
 you supply these initials, they are stored in the TRACE block for
 the edit.

 .MODULE xxxxxx − This pseudo−op gives the name (xxxxxx) of the
 module that you wish to edit. It is the module name as it
 appears in the library, up to six Radix−50 characters. Once you
 give a name, that module is loaded. Editing continues with this
 module unless a new .MODULE pseudo−op is given. You do not have
 to edit modules in the same order that they reside in the master
 library (first input file). However, each module may be named
 only once within an edit.

 .ASSOCIATED +edit1,−edit2,+edit3,+edit4..... − This pseudo−op
 gives information on which other related edits must be present in
 the specified module. The edit names here are the same as those
 designated under the .EDIT pseudo−op. The "+" indicates that the
 edit is required. The "−" indicates an edit that conflicts with
 the current edit; you cannot have both edits active
 simultaneously. You receive notification if the specified module
 does not contain the correct combination of associated edits.
 The default is "+" if no sign precedes the edit name.
 Information you supply with the .ASSOCIATED pseudo−op must
 precede any information supplied in the .FIX file by the .INSERT,
 .REMOVE, or .REINSERT pseudo−ops.

 .VERSION nnnxx(nnnnnn)−g − This pseudo−op allows you to specify
 the version number of the edit. The version is in standard
 TOPS−20 version format. The nnn designates the major version
 number, which consists of three octal digits maximum. The xx
 designates the minor version, which consists of two letters
 maximum. The (nnnnnn) designates the edit number, and can be up
 to six octal digits. The g designates the code for the group
 that last edited the module, and it is one octal digit maximum.
 All fields are optional.

 .ALTER location,<new value>,<original value> − This pseudo−op
 changes the contents of a specific location. All code is written
 in angle brackets, < >. The original value at the specified
 location is replaced by a new value. The first argument,
 location, is where you wish to place the new value. Once you

 6−20

 THE MAKLIB PROGRAM

 enter the new value, it is evaluated and placed into the
 specified location. You can specify a third argument, <original
 value>, to check whether the actual original value differs from
 the expected original value. If it does, MAKLIB gives you an
 error message and the location is not altered.

 .INSERT location,keyword:n,<original value> − This pseudo−op
 allows you to add code to a module. You precede the new code
 with a .INSERT pseudo−op and terminate the sequence with a .ENDI
 pseudo−op. MAKLIB assembles the code and adds it to the module
 in the output file.

 The .INSERT pseudo−op takes three arguments. The first gives the
 location at which you want the new code executed. This argument
 can be a numeric or symbolic expression. This location is
 assumed to be relocatable, and may be in either the low or the
 high segment. The second argument is a keyword that specifies
 how the code is to be located with respect to this location.
 This keyword is one of the following:

 BEFORE − Insert the new instructions so that they are
 executed before the instruction at the specified
 location.

 AFTER − Insert the new instructions so that they are
 executed after the instruction at the specified
 location.

 REPLACE − Delete one instruction from the existing code for
 each one included in the edit, beginning with the
 instruction at the location of the edit. Then,
 insert the new instructions so that they are
 executed in place of the deleted code.

 REPLACE:n − Delete n instructions from the existing code,
 starting with the instruction at the edit
 address. Then, insert the new instructions so
 that they are executed in place of the deleted
 code. This applies no matter how many
 instructions you insert. The argument may be an
 expression, and is evaluated in the current
 radix.

 You can specify a third argument, <original value>, to check
 whether an actual original value differs from the expected
 original value. If it does, MAKLIB gives you an error message
 and the editing does not take place. This argument gives the
 line of code at the location specified by the first argument.
 The code is written in angle brackets, and is evaluated. It must
 exactly match the code at the specified location. If the code at
 the location is a literal, you must give only the first word.

 6−21

 THE MAKLIB PROGRAM

 MAKLIB always inserts the new code at the end of the current
 segment. It replaces the referenced instruction with an
 unconditional jump to the new code. The format of code insertion
 appears in Section 6.5, Technical Notes.

 Because MAKLIB does not physically insert the code at the
 location you specify, you need to consider a restriction when you
 use this facility.

 MAKLIB constructs a patch that has the effect of a skipping
 instruction, and assumes that it follows an instruction that can
 potentially skip, at most, one instruction. If the intent of the
 patch does not fit these assumptions, it may not work correctly.
 Further, for REPLACE functions, MAKLIB assumes that program
 control can only pass to the first instruction of the deleted
 code.

 For example consider the following code segment,

 JRST FOO
 BAR: JFCL
 JFCL
 FOO: JFCL
 JFCL
 JFCL

 and a MAKLIB patch to it:

 .INSERT BAR,REPLACE:4<JFCL>
 JFCL
 .ENDI

 Note that the JRST FOO instruction at BAR−1 still causes the old
 code to be executed in spite of the patch.

 As another example, consider the following:

 LABEL: OPENF% ;A JSYS MONITOR CALL
 ERJMP ERROR
 JFCL

 A patch using .INSERT cannot specify any combination of BEFORE or
 AFTER with location LABEL or LABEL+1. To do so would separate
 the JSYS and the ERJMP instructions, which must be consecutive to
 operate properly.

 .REMOVE edit1,edit2,edit3.... − This pseudo−op deactivates the
 specified edits from the selected module. The original
 instructions displaced by the jumps to the edit area for each
 .INSERT are returned to that location. No changes are made to
 the symbol table. The arguments are the edits you wish to
 remove.

 6−22

 THE MAKLIB PROGRAM

 .REINSERT edit1,edit2,edit3... − This pseudo−op activates any
 edits you previously removed with the .REMOVE pseudo−op.

 .ENDI − This pseudo−op marks the ending point of the code
 following the last .INSERT pseudo−op.

 .ENDE − This pseudo−op marks the ending point of the complete
 edit. It also instructs MAKLIB to check for undefined labels or
 other invalid entries within the edit. Figure 6−9 illustrates
 the order that pseudo−ops appear in a .FIX file:

 Figure 6−9: Order of Pseudo−ops in a .FIX File

 −−−
 | EDIT /−−−−−
 | | DATE
 | <−−−−−−−−−−−−−− <
 | | NAME
 | \−−−−−
 |
 | −−−− /−−−−−−−−−−−−
 | | MODULE | ASSOCIATED
 | | | REMOVE
 | | | REINSERT
 | | | VERSION
 | | <−−−−−−−−−−− < ALTER
 | | | −−−
 | | | | INSERT
 | | | | END I
 | | | −−−
 | | \−−−−−−−−−−−−
 | −−−−
 |
 | −−−−
 | | MODULE
 | |
 | −−−−
 | .
 | .
 | .
 |
 | END E
 −−−−

 The MAKLIB program has a one−pass assembler. Because of this, forward
 references to labels and expressions are restricted to simple addition
 and subtraction on the halfword boundary. References to undefined
 labels or symbols are valid where references to external symbols would

 6−23

 THE MAKLIB PROGRAM

 be valid in MACRO (with no polish fix−ups). Literals are treated as
 forward references, because the actual location of the literal is not
 known until the .INSERT pseudo−op ends. Defining a label inside of a
 literal is not valid. Finally, the value you place in the right−hand
 side of an assignment must not be forward or external.

 It is not required that assignments be inside .INSERT in the .FIX
 file. It is required, however, that the .EDIT and .MODULE pseudo−ops
 precede any assignments, because these define new symbols in the
 symbol table. MAKLIB does not allow redefinitions of existing
 symbols, because it is impossible to backtrack references to a symbol
 in the relocatable binary file. So, any label or symbol you create
 with /FIX must be new to the program.

 To simplify editing and to keep the appearance of binary edits as
 close as possible to the source level, the following pseudo−ops are
 implemented in the MAKLIB .FIX file assembler and operate as they do
 in MACRO:

 ASCII ASCIZ BLOCK
 BYTE COMMENT DEC
 EXP IOWD OCT
 POINT PURGE RADIX
 RADIX50 REMARK SIXBIT
 SQUOZE SUBTTL TITLE
 XWD

 NOTE

 The pseudo−ops BYTE, DEC, OCT, and EXP are limited to
 a maximum generation of one word of data.

 All MACRO operators and qualifiers are available except ^F. MAKLIB
 also supports the following MACRO pseudo−ops for writing conditional
 code:

 IFN IFG IFDEF
 IFE IFLE IFNDEF
 IFL IFGE

 You may follow symbols with ## (double pound sign) to indicate that
 they are EXTERNAL quantities. However, if the symbol is defined as
 EXTERNAL (already in the symbol table), you do not have to use ##. It
 is not necessary to follow undefined symbol names with # (single pound
 sign), since it is assumed that any undefined symbol is a forward
 reference. If a symbol name is already assigned and followed by the
 #, you receive an error message (see Section 6.5, MAKLIB Messages).
 You may define labels as internal (available to other programs) if
 they are followed by :: (double colon). Entry points may not be
 defined. The full facilities available in MACRO for combinations of
 DDT suppression and internal declaration are available for both labels
 and assignments.

 6−24

 THE MAKLIB PROGRAM

 Command String Requirements −

 Files: A master library (first input file) and an
 output file are required in the command
 string. The .FIX file is the required
 transaction file.

 Default file type: .REL for both the output file and the master
 library. The default for the transaction
 file is .FIX.

 Arguments: None.

 The editing command string accepts two switches. They are /FIX and
 /WHO.

 /FIX − FIX Switch

 This switch makes changes to the actual code and symbol table of
 a module. It appears with the transaction (.FIX) file spec.

 /WHO:xxx − WHO Switch

 This switch is optional and you use it only with /FIX. You can
 enter it in either the master library or the transaction (.FIX)
 file spec. The argument to /WHO can be up to three characters
 (xxx). These are usually the initials of the person using MAKLIB
 at the time the edit is installed. If you include this
 information, it appears in the TRACE block of all new edits (in
 the last affected field and in the last installed field). If any
 of these edits change the status of an existing edit (such as
 .REMOVE or .REINSERT), this information is entered in the last
 affected field of the TRACE block of the affected edit. If you
 use /WHO without /FIX, MAKLIB ignores it in the command string.

 In order to edit a library with a .FIX file, you can use the following
 command string. In this example, you use the .FIX file FIX1.FIX to
 edit the library OLDLIB.REL, and create an updated library NEWLIB.REL.

 @ MAKLIB<RET>
 * NEWLIB=OLDLIB,FIX1/FIX/WHO:SFA<RET>
 *

 The following are sample .FIX files. This first example illustrates
 the use of the .INSERT and .VERSION pseudo−ops. One module in the
 library is modified.

 .EDIT 341
 .NAME HAS
 .MODULE GLOB..
 .VERSION 4C(341)

 6−25

 THE MAKLIB PROGRAM

 .INSERT START,AFTER,<RESET>
 MOVE P,[IOWD PDLEN,PDLIST]
 .ENDI
 .INSERT LOOP+3,BEFORE,<JRST LOOP>
 PUSHJ P,NEXTCR
 .ENDI
 .ENDE

 The following edit illustrates the use of .ALTER pseudo−op to change
 the value of a table entry. Location RAD50+46 is changed from a "."
 to a "$". In addition, this edit uses the .ASSOCIATED pseudo−op to
 specify that this edit also requires edit 343 to the module TABLES.

 .EDIT 344
 .NAME HAS
 .MODULE TABLES
 .ASSOCIATED 343
 .ALTER RAD50+46,<"$">,<".">
 .ENDE

 This edit uses the .REMOVE pseudo−op to deactivate edit 345 in the
 module FSORT. As a result of this operation, any code that was
 changed by edit 345 will be restored to its previous state.

 .EDIT 346
 .NAME HAS
 .MODULE FSORT
 .REMOVE 345
 .ENDE

 6.3 MAKLIB SWITCH OPTIONS

 Table 6−1 is a reference table of all MAKLIB program switches. These
 switches are listed alphabetically. The function that each switch
 performs appears beside it in the table.

 Table 6−1: MAKLIB Switches

 __

 Switch Function
 __

 /APPEND Adds new modules to the end of an existing
 library.

 6−26

 THE MAKLIB PROGRAM

 /DELETE Removes one or modules from an existing library.

 /EXIT Terminates MAKLIB and returns you to TOPS−20
 command level.

 /EXTRACT Produces an output file that is a subset of
 modules in the master library.

 /FIX Makes changes to the actual code and symbol
 table of a module.

 /INDEX Produces an output file identical to the master
 library except with INDEX blocks inserted in the
 file.

 /INSERT Inserts new modules into the master library.

 /LIST Lists the names of the modules that are
 contained in the master library.

 /LOAD Shows additional loading instructions that are
 embedded within the library in either REQUEST,
 REQUIRE, or ASCII text blocks.

 /MASTER Identifies files within the master library that
 correspond to those in the transaction file
 being used to effect the update.

 /NOLOCALS Produces an output file which is the master
 library with all local symbols deleted from the
 file symbol blocks.

 /POINTS Lists all entry points in the specified library.

 /REPLACE Replaces modules in the master library with
 those specified in the transaction file.

 /TRACE Lists all the edits made to a library.

 /WHO Specifies the initials of the person using
 MAKLIB when an edit is installed.
 __

 6.4 MAKLIB MESSAGES

 The MAKLIB program issues two types of messages: fatal errors and
 warning messages. Fatal errors are preceded by a question mark (?)
 and cause the current command to be aborted. Warning messages are
 preceded by a percent sign (%) and indicate that the command will be
 completed, but the operation may not have been performed as you

 6−27

 THE MAKLIB PROGRAM

 intended.

 All messages are typed on your terminal. They begin with a six
 character code that identifies the error. This is followed by a short
 description of the problem.

 MAKLIB uses the command scanner routines SCAN and WILD. The following
 list of messages contains the most common messages that these routines
 produce. These messages begin with SCN or WLD.

 Some of the messages contain information that is dependent on the
 exact command string, switch, or file you wish to process. The key to
 these message variables follows:

 [edit] The name of a specific edit.

 [file] A file spec.

 [label] The name of the label which caused the error.

 [location] The location where the error was detected.
 This is expressed as either a symbolic
 address or as a line number in the .FIX file.

 [module] The name of a specific module.

 [pseudo−op] A specific pseudo−op.

 [statement] A specific statement related to or causing
 the error.

 [status] A specific numeric file status code.

 [switch] A specific MAKLIB command switch.

 [symbol] A symbol. (Refer to the TOPS−20 MACRO
 ASSEMBLER Reference Manual for an exact
 definition.)

 [type] A REL Block type.

 [value] A specific value.

 All MAKLIB messages are listed here alphabetically by the
 six−character code. A suggested user response is provided for each
 fatal error and those warning messages that require correction.

 ?MKLAAC .ASSOCIATED seen after .INSERT,.REMOVE or .REINSERT in edit
 [edit]

 Description: In the indicated .EDIT, the .ASSOCIATED pseudo−op

 6−28

 THE MAKLIB PROGRAM

 is out of order.

 Suggested User Response: Move the .ASSOCIATED pseudo−op so that
 it appears before any .INSERTs, .REMOVEs, or .REINSERTs.

 ?MKLAAL .ALTER address is not in current module in edit [edit]

 Description: In your edit, you used a .ALTER pseudo−op to change
 the contents of an address. However, you gave an address that
 does not exist in the specified module.

 Suggested User Response: Change the .ALTER pseudo−op so that it
 specifies a legal address.

 %MKLAFI Arguments to /FIX switch are ignored

 Description: In the command string, you gave arguments on /FIX.
 There are no defined arguments for /FIX, so MAKLIB ignores any
 that you specify.

 %MKLAMI Assignment to [symbol] with no module selected was ignored:
 [statement]

 Description: In a .FIX file you assigned a value to a symbol,
 but you did not specify a module.

 Suggested User Response: Change the .FIX file so that the
 assignment statement occurs after the .MODULE pseudo−op. This
 specifies which symbol belongs with a particular module.

 ?MKLANA Asterisk not allowed as output file spec

 Description: In the command string you gave an output file name
 that included a wildcard character.

 Suggested User Response: Since wildcard characters are illegal
 for the output file name, reissue the command with an explicit
 output file name.

 ?MKLASG FORWARD/EXTERNAL assignment to [symbol] at [location] (Edit
 [edit])
 [statement]

 Description: In the specified edit, you assigned a forward or
 external reference.

 Suggested User Response: MAKLIB does not support forward or
 external references. Change the assignment statement.

 ?MKLBAM BEFORE, AFTER or REPLACE missing from .INSERT in edit [edit]

 Description: You typed an incomplete .INSERT pseudo−op in a .FIX

 6−29

 THE MAKLIB PROGRAM

 file.

 Suggested User Response: Include the required second argument
 for .INSERT indicating how the code should be inserted.

 ?MKLBDA Bad .DATE argument for edit [edit]

 Description: In a .FIX file you specified a date that was not in
 a recognizable format for the .DATE pseudo−op.

 Suggested User Response: Specify the date in the form dd−mon−yy,
 such as 7−JUL−77.

 ?MKLBNI Binary patching tool not included in MAKLIB

 Description: You attempted to use a .FIX file with a version of
 MAKLIB that does not support .FIX files.

 Suggested User Response: Rebuild MAKLIB from the MACRO source
 files and set feature switch FTBPT non−zero.

 ?MKLCDM Existing code does not match original code

 Description: The original value you specified with either the
 .ALTER or .INSERT pseudo−op does not match the actual code at the
 location you were attempting to change.

 Suggested User Response: First, determine if this is an error in
 the original value field of the pseudo−op. If this is actually
 the value you expected at that location, this error could
 indicate that you are trying to edit a different version of the
 library file.

 %MKLCII Code generated outside of range of .INSERT was ignored:
 [statement]

 Description: You entered a .FIX file with a sequence of code
 that was not included between .INSERT and .ENDI pseudo−ops.

 Suggested User Response: Change the .FIX file so that the
 instructions are within the range of an .INSERT. They can then
 be inserted in the module.

 %MKLCNF Insertion of edit [edit1] by edit [edit2] conflicts with edit
 [edit3]

 Description: Edit2 contains a .REINSERT pseudo−op for edit1.
 This conflicts with the .ASSOCIATED list in edit3 which is
 currently an active edit for this module. This is only a warning
 message, and the actual .REINSERT does take place. You can
 verify the current status of any edits with /TRACE.

 6−30

 THE MAKLIB PROGRAM

 %MKLCNF Removal of edit [edit1] by edit [edit2] conflicts with edit
 [edit3]

 Description: Edit2 contains a .REMOVE pseudo−op for edit1. This
 conflicts with the .ASSOCIATED list of edit3 which is currently
 an active edit for this module. This is only a warning message,
 and the actual .REMOVE does take place. To verify the status of
 any edits, use /TRACE.

 ?MKLCSR Command switch is required

 Description: You typed an incomplete command string. Supply
 additional information with file switches.

 Suggested User Response: Reissue the command string including
 the necessary switches on either the master library or
 transaction files.

 ?MKLEEI .ENDE seen before .ENDI in edit

 Description: Your .FIX file is missing an .ENDI pseudo−op, or
 the .ENDI pseudo−op is out of order.

 Suggested User Response: Make sure that each .INSERT pseudo−op
 is matched with an .ENDI pseudo−op to identify the code to be
 inserted. The .ENDE pseudo−op indicates the end of an edit.
 Therefore, it is always the last statement of an edit.

 ?MKLEFF End of file found before END block in module

 Description: The input master file is bad. Although part of the
 file is readable, the END block (REL Block type 5) is missing for
 the particular module. This indicates that the file is damaged.

 Suggested User Response: Re−create the file or restore it from a
 backup copy.

 %MKLEMA Entire MASTER file will be appended

 Description: For the current command string, the entire MASTER
 file is being appended to the output file even though you
 specified an individual module.

 ?MKLEPM .EDIT pseudo−op is missing from FIX file

 Description: The .FIX file is incorrect.

 Suggested User Response: Change the .FIX file so that each edit
 begins with the .EDIT pseudo−op and ends with an .ENDE pseudo−op.

 ?MKLERI Edit [edit] tried to .REMOVE or .REINSERT itself

 6−31

 THE MAKLIB PROGRAM

 Description: The .FIX file contains an edit that has a .REMOVE
 or .REINSERT pseudo−op referencing itself. These pseudo−ops must
 reference edits that have previously been applied to the module.

 Suggested User Response: Change the .FIX file so that the
 .REMOVE or .REINSERT pseudo−op does not reference the current
 edit.

 ?MKLETC MACRO code expression too complex at [location] (Edit [edit])

 Description: The expression at the indicated location is too
 complex for MAKLIB to evaluate.

 Suggested User Response: Try to break the expression into
 several simpler expressions.

 ?MKLETL ENTRY block is too large to read in for module [module]

 Description: MAKLIB does not have enough space allocated to
 process all the entry points for the specified module.

 Suggested User Response: Try to reduce the number of entry
 points in the module.

 ?MKLFF4 Cannot apply FIX to F40 produced REL file

 Description: You attempted to apply a .FIX file to a .REL file
 produced by the F40 FORTRAN compiler. This operation is not
 supported by MAKLIB. F40 generates .REL files that MAKLIB cannot
 edit from .FIX files.

 ?MKLFNI Qualifier ^F not implemented

 Description: MAKLIB does not support ^F for entering a
 fixed−point decimal number.

 Suggested User Response: Enter the value in an alternate form.

 ?MKLFSI File status error on input [status] for file [file]

 Description: An error occurred while MAKLIB was reading the
 specified file. The status value that appears is described in
 this manual in Table 5−3.

 Suggested User Response: This could indicate a more global
 problem with the system. Refer to Table 5−3 in this manual to
 determine the specific problem with the named file.

 ?MKLFSO File status error on output [status] for file [file]

 Description: An error occurred while MAKLIB was writing the
 specified file. The status value that appears is described in

 6−32

 THE MAKLIB PROGRAM

 this manual in Table 5−3.

 Suggested User Response: This could indicate a more global
 problem with the system. Refer to Table 5−3 in this manual to
 determine the specific problem with the named file.

 ?MKLIAA Illegal address in .ALTER in edit [edit]

 Description: In the specified edit, you used a .ALTER pseudo−op
 to change the contents of an address. However, you gave an
 illegal value for an address.

 Suggested User Response: Change the .ALTER pseudo−op so that is
 specifies a legal address.

 ?MKLIAI Illegal address in .INSERT in edit [edit]

 Description: You specified an illegal address in the location
 field for a .INSERT pseudo−op.

 Suggested User Response: See if the address you specified is the
 address of a literal, external, or undefined address. These are
 not allowed.

 ?MKLIAL .INSERT address is not in current module in edit [edit]

 Description: You specified an address in the location field for
 a .INSERT pseudo−op that is not in the specified module.

 Suggested User Response: First determine if the address you
 specified is the one you intended. Then check the .FIX file to
 verify that you placed the .INSERT sequences after the correct
 .MODULE pseudo−ops.

 ?MKLIBT Illegal block type ([type]) was seen in file [file]

 Description: MAKLIB encountered an illegal REL Block while
 reading the indicated file.

 Suggested User Response: The .REL file being read may be
 damaged. Re−create the .REL file and try again.

 ?MKLIED Internal error detected at [location] in MAKLIB

 Description: This indicates that MAKLIB cannot perform the
 operation you were attempting.

 Suggested User Response: Contact your Software Specialist or
 send a Software Performance Report (SPR) to DIGITAL.

 ?MKLIIA .INSERT pseudo−op illegal inside range of .INSERT [edit]

 6−33

 THE MAKLIB PROGRAM

 Description: In the specified edit, you nested .INSERT
 psuedo−ops.

 Suggested User Response: These pseudo−ops cannot be nested. Use
 the .ENDI pseudo−op to end the first .INSERT sequence before you
 begin another.

 ?MKLIII Illegal pseudo−op in range of .INSERT: [value] at [location]
 (edit[edit])

 Description: In your .FIX file you used a MACRO pseudo−op which
 is illegal in a .INSERT sequence.

 Suggested User Response: Verify that this is the correct MACRO
 pseudo−op for the operation you wish to perform.

 ?MKLILS Illegal use of long string or BLOCK in .ALTER at [location]
 (edit[edit])

 Description: You tried to use a multi−word value with the .ALTER
 pseudo−op.

 Suggested User Response: The .ALTER pseudo−op is for changing
 single word values only. This applies to the original value as
 well as the new value. Use a separate .ALTER pseudo−op for each
 word to be altered.

 ?MKLIPM .ENDI seen without .INSERT in edit [edit]

 Description: The .FIX file is incorrect.

 Suggested User Response: Change the .FIX file so that each set
 of instructions you wish to insert begins with an .INSERT
 pseudo−op and ends with a .ENDI pseudo−op.

 ?MKLIRF Illegal relocation in FORWARD reference to [symbol] in edit
 [edit]

 Description: MAKLIB could not process the reference to the
 specified relocatable symbol.

 ?MKLIRM /INSERT requires at least one /MASTER specification

 Description: The command string is incomplete.

 Suggested User Response: When you specify /INSERT on a
 transaction file, you must include /MASTER with the master file.
 You must supply a specification on /MASTER for every module you
 wish to insert.

 ?MKLISM /INSERT,/REPLACE and /FIX are illegal switches on MASTER

 6−34

 THE MAKLIB PROGRAM

 Description: The command string is incorrect.

 Suggested User Response: Reissue the command string putting
 /INSERT, /REPLACE, or /FIX on the transaction file. When you use
 /INSERT or /REPLACE, you must include /MASTER on the master file.

 ?MKLIST interim symbol table overflowed, Code too complex in edit
 [edit]

 Description: Your specified edit contains code that has too many
 symbols for MAKLIB to process.

 Suggested User Response: Try to break the single edit into
 several edits, each having a fewer number of symbols.

 ?MKLITS Insufficient TRACE block storage in edit [edit]

 Description: The specified edit exhausted all allocated storage
 for TRACE block information.

 Suggested User Response: Try to break the edit into several
 edits, thus reducing the amount of storage MAKLIB needs for TRACE
 blocks at any one time. For each edit, MAKLIB creates a TRACE
 block for each module that is changed.

 ?MKLIUN Illegal to have null address in .INSERT in edit [edit]

 Description: In the specified edit, the location field of a
 .INSERT pseudo−op is null.

 Suggested User Response: The location field cannot be null. It
 specifies the location where you want to insert the patch code.

 %MKLLII Label outside of .INSERT was ignored: [label]

 Description: In a .FIX file you specified a label outside the
 range of a .INSERT.

 Suggested User Response: Change the .FIX file so that the label
 occurs within the range of a .INSERT−.ENDI pair. This specifies
 where you insert the new label in the program.

 ?MKLLTL MACRO code line is too long at [location] (Edit[edit])

 Description: In the specified edit, a line of code in the .FIX
 file is too long for MAKLIB to process.

 Suggested User Response: Try to reduce the length of the line by
 breaking it into several shorter lines.

 ?MKLMCA Pseudo−operator argument error at [location] (Edit[edit])

 6−35

 THE MAKLIB PROGRAM

 Description: You gave an illegal pseudo−op argument. The values
 you can use depend on the particular pseudo−op.

 Suggested User Response: Supply a legal value for that
 pseudo−op.

 ?MKLMCB MASTER device must be capable of binary IO

 Description: The input master file in your command string is not
 on a device that is capable of binary input/output. MAKLIB
 performs binary input/output on the master file.

 Suggested User Response: Keep the files you plan to use as
 MAKLIB master files on devices capable of binary input/output.

 ?MKLMCE Command error

 Description: MAKLIB was not able to recognize a valid command
 from the command string that you typed. This error could occur
 if you improperly formatted the command string or if you used a
 non−unique abbreviation to specify a switch.

 Suggested User Response: Retype the command string in the
 correct format: Destination File Spec=Source File
 Spec1/Switches,Source File Spec2/Switches,...Source File
 Specn/Switches

 ?MKLMCF Illegal forward or external reference at [location] (Edit
 [edit])

 Description: At the specified location you made a reference to
 an undefined symbol in this module. It could be a forward
 reference to a new symbol or it could be an external reference.
 MAKLIB cannot process forward references to new symbols. This
 error could also occur if you attempted to reference an existing
 symbol and supplied the wrong symbol name.

 Suggested User Response: Change your forward or external
 references to legal ones.

 ?MKLMCM Attempt to redefine value of symbol [symbol] at [location]
 (Edit [edit])

 Description: You tried to redefine the value of an existing
 symbol. MAKLIB does not support this.

 Suggested User Response: You cannot use MAKLIB to change the
 value of an existing symbol. If this is not what you intended to
 do, you may be using a symbol that was already defined. Try
 another symbol.

 ?MKLMCN MACRO code numeric error at [location] (Edit [edit])

 6−36

 THE MAKLIB PROGRAM

 Description: You supplied a numeric argument at the specified
 location that is illegal in that context.

 Suggested User Response: Supply a legal numeric value.

 ?MKLMCQ MACRO code is questionable at [location] (Edit [edit])

 Description: MAKLIB cannot process the code at the specified
 location.

 Suggested User Response: Check the code for legal MACRO syntax.

 ?MKLMCR MACRO code relocation error at [location] (Edit [edit])

 Description: The value at the specified location contains a
 half−word that is neither absolute nor simply relocatable.
 Expressions that would require polish, such as A + A where A is
 relocatable, cannot be handled in MAKLIB.

 Suggested User Response: Give absolute or simple relocatable
 values only.

 ?MKLMCU Undefined symbol: [symbol] at [location] (Edit [edit])

 Description: The symbol shown is not defined.

 Suggested User Response: Define the symbol. If you are trying
 to use a symbol that you think is already defined, check for the
 correct symbol name.

 ?MKLMCW BYTE,EXP,DEC,or OCT more than one word at [location] (Edit
 [edit])

 Description: You used an expression that generates a multi−word
 value. In this context, MAKLIB supports only a single word
 value.

 Suggested User Response: Try to break the expression into
 simpler expressions, each generating a single word value.

 ?MKLMEP Missing .ENDE for edit [edit]

 Description: The specified edit in your .FIX file is incorrect.

 Suggested User Response: Change the .FIX file so that each edit
 begins with the .EDIT pseudo−op and ends with an .ENDE pseudo−op.

 ?MKLMFR Master file rejected by condition

 Description: The master file did not meet the condition you
 specified; hence processing cannot continue.

 6−37

 THE MAKLIB PROGRAM

 ?MKLMHE Module already has an edit [edit]

 Description: You attempted to apply an edit to a module that
 already has an edit with a similar identifier.

 Suggested User Response: Each edit to a module must have a
 unique identifier. You may have already applied this edit to the
 module.

 ?MKLMKM [Pseudo−op] pseudo−op in edit [edit] without preceding .MODULE

 Description: In the specified edit, you gave a pseudo−op out of
 order. It applies to a specific module that you must specify
 with a preceding .MODULE pseudo−op.

 Suggested User Response: Make certain that a .MODULE pseudo−op
 precedes those pseudo−ops that refer to a specific module.

 ?MKLMNF Module [module] was not found in file [file]

 Description: MAKLIB cannot find the specified module in this
 file. If you are trying to apply a .FIX to a master library, you
 may have specified a non−existent module name on a /MODULE
 pseudo−op. You can also receive this error when you perform an
 operation that does not involve .FIX files. You may have
 specified several module names and supplied them out of order.
 The module in question may be in the file. But since MAKLIB
 processes files in a sequential manner, it will not find all
 modules.

 Suggested User Response: Use /LIST to see if the specified
 module is really in the library. If not, you cannot perform this
 function.

 %MKLMNI /MASTER module names are ignored when patching

 Description: For editing, the correct way to specify module
 names is with the .MODULE pseudo−op in the .FIX file. /MASTER is
 not required for this type of command. MAKLIB ignores it.

 ?MKLMTF /MASTER switch cannot be used on transaction file

 Description: The command string is incorrect.

 Suggested User Response: Retype the command string with the
 switch in the correct place. Include only /MASTER on the master
 file.

 ?MKLNEA Not enough arguments specified

 Description: The command string is incomplete. This error
 usually means that you omitted a required file spec.

 6−38

 THE MAKLIB PROGRAM

 Suggested User Response: Retype the command string in the
 correct format: Destination File Spec=Source File
 Spec1/Switches,Source File Spec2/Switches...Source File
 Specn/Switches

 ?MKLNEC Not enough core is available

 Description: MAKLIB cannot obtain enough core to process this
 command.

 Suggested User Response: Break the .REL files into smaller
 numbers of modules, or break large modules into smaller modules.

 ?MKLNEI Null argument to .EDIT is illegal

 Description: You did not specify an edit identifier on the .EDIT
 pseudo−op.

 Suggested User Response: Each .EDIT pseudo−op requires an
 argument (up to 6 characters) that identifies the edit.

 %MKLNIO Output file [file] will not be indexed

 Description: The output file will not include an index. To add
 an index to the file, issue a separate MAKLIB command with
 /INDEX.

 ?MKLNMS Null specification to .MODULE [edit]

 Description: In your edit, you included a .MODULE pseudo−op
 without the module name.

 Suggested User Response: Correct the .FIX file by supplying a
 module name on each .MODULE pseudo−op.

 ?MKLNPC No program code was found for module in edit [edit]

 Description: You have specified a non−existent module in the
 master file.

 ?MKLNPS No program names were specified for file [file]

 Description: You tried to manipulate some of the modules in the
 specified file, but you did not supply any module names.

 Suggested User Response: In order to /EXTRACT or /DELETE modules
 from a file, supply the module name on the file switch.

 ?MKLNRP Not a recognized position switch: [value]

 Description: You gave an illegal position indicator on an
 .INSERT pseudo−op.

 6−39

 THE MAKLIB PROGRAM

 Suggested User Response: Use one of the three legal position
 indicators: BEFORE, AFTER, or REPLACE.

 ?MKLNTM Not enough TRANSACTION modules were specified

 Description: You did not supply enough replacement module names
 to perform the /REPLACE operation.

 Suggested User Response: When you give the MAKLIB command
 string, make certain that there is a corresponding replacement
 module for each module you intend to replace in the master
 library.

 ?MKLODD Output device must be DISK or DECTAPE

 Description: In your MAKLIB command, you specified an illegal
 output library device.

 Suggested User Response: Retype the command string and use disk
 for the output device of the library file.

 ?MKLPEF Premature end−of−file during edit [edit] in file [file]

 Description: While processing the indicated edit, MAKLIB
 encountered an unexpected end of file in the .FIX file. This
 error usually occurs when you omit the .ENDE pseudo−op.

 Suggested User Response: Check the .FIX file for errors, and
 look especially for .ENDI and .ENDE pseudo−ops.

 %MKLPEP Precluded edit [edit] is present in module

 Description: The module you are editing contains an active edit
 that your current edit precludes with the .ASSOCIATED pseudo−op.
 MAKLIB still applies your edit.

 %MKLPES Purging EXTERNAL symbol [symbol] may give bad REL file

 Description: One of the symbols that this edit PURGEd from the
 symbol table was an EXTERNAL symbol. With this symbol removed,
 it may not be possible to LINK the file correctly.

 ?MKLRBF REQUEST or REQUIRE block is badly formatted

 Description: In the master library being processed, MAKLIB
 encountered a REQUEST block (REL Block type 17) or REQUIRE block
 (REL Block type 16) that was not in the expected format.

 Suggested User Response: The library file may be damaged. Try
 to rebuild it.

 %MKLREM Required edit [edit] is missing from module

 6−40

 THE MAKLIB PROGRAM

 Description: The module you are editing is missing an active
 edit that your current edit requires with the .ASSOCIATED
 pseudo−op. MAKLIB still applies your current edit.

 %MKLRER Required edit [edit] is inactive in module

 Description: The module you are editing contains an inactive
 edit that your current edit requires with the .ASSOCIATED
 pseudo−op. MAKLIB still applies your current edit.

 %MKLRIA Edit [edit] tried to .REINSERT already active edit

 Description: Your current edit contains a .REINSERT pseudo−op
 that attempts to activate an edit that is already active.

 %MKLRIE Edit [edit] tried to .REMOVE already inactive edit

 Description: Your current edit contains a .REMOVE pseudo−op that
 attempts to deactivate an edit that was previously deactivated.

 %MKLRIN Edit [edit] tried to .REINSERT non−existent edit

 Description: Your current edit contains a .REINSERT pseudo−op
 that attempts to activate a non−existent edit.

 %MKLRNE Edit [edit] tried to .REMOVE non−existent edit

 Description: Your current edit contains a .REMOVE pseudo−op that
 attempts to deactivate a non−existent edit.

 ?MKLRTL .INSERT’s REPLACE argument of [value] too large for module
 [module]

 Description: On a .INSERT pseudo−op you specified a number of
 instructions to be replaced. This number exceeds the number of
 instructions in the module beyond the starting replacement
 address.

 Suggested User Response: Correct the argument to the REPLACE
 keyword on the .INSERT pseudo−op.

 ?MKLSCE Storage for patch code was exhausted in edit [edit]

 Description: MAKLIB allocates a fixed amount of space for
 processing the new code inserted from a .FIX file. Your .FIX
 file contains more code than MAKLIB can process in the allocated
 space.

 Suggested User Response: Try to break your .FIX file into
 several .FIX files with fewer lines of new code.

 ?MKLSIO Switches are illegal on output

 6−41

 THE MAKLIB PROGRAM

 Description: The command string is incorrect. Switches are not
 recognized on the output file.

 Suggested User Response: Retype the command string including any
 necessary switches with the appropriate input files.

 %MKLSNF Symbols not found for module

 Description: There are no symbols in the master file for the
 module that you wish to edit.

 ?MKLSSE Storage for patch symbols was exhausted during edit [edit]

 Description: MAKLIB allocates a fixed amount of storage for
 processing the new symbols from .FIX files. Your .FIX file
 contains more symbols than MAKLIB can process in the allocated
 space.

 Suggested User Response: Try to break your .FIX file into
 several .FIX files with fewer symbols.

 %MKLTBF TRACE block is badly formatted in module

 Description: One of the TRACE blocks (REL Block type 1060) for
 this module is not in the expected format. The .REL file may be
 damaged. Since the loader ignores trace blocks when reading a
 file, you may still be able to load from this .REL file.

 %MKLTFI Transaction file ignored

 Description: You included a transaction file in the command
 string to create an indexed library.

 Suggested User Response: You must create the indexed library as
 a single operation. If there are several operations you must
 perform on the library, the command to index the library should
 be the last command that you issue.

 ?MKLTFR All transaction files rejected by condition.

 Description: Processing cannot continue because the transaction
 files did not meet the condition you specified (as size, creation
 date, etc.).

 ?MKLTMN Too many module names . . . stopped at [module]

 Description: The command string is too long.

 Suggested User Response: Retype the command string as several
 shorter commands. It is unlikely that this message will appear,
 since MAKLIB now allows up to 100 switch arguments for each
 command string.

 6−42

 THE MAKLIB PROGRAM

 ?MKLTMS Too many switches

 Description: You included too many switches on a file spec. You
 specified some of the switches in an illegal combination.

 Suggested User Response: Retype the command string in a correct
 format.

 ?MKLUDF Module [module] in edit [edit] contains undefined symbol(s)

 Description: Your current edit contains undefined symbols in the
 indicated module.

 Suggested User Response: Make certain that all new symbols
 introduced in your .FIX file have values associated with them.

 ?MKLWIO Wild cards illegal for output file specification

 Description: You gave an output file name in the command string
 that included wildcard characters (either * or ?).

 Suggested User Response: Since wildcard characters are illegal
 for the output file name, retype the command string with an
 explicit output file name.

 ?SCNSVR Switch value required on [switch]

 Description: The specified switch requires a value.

 Suggested User Response: Retype the command string and supply a
 value for the switch. The format for providing a value is
 /switch:value or /switch:(value1,value2).

 ?WLDLKE Protection failure file [file]

 Description: The specified file is protected. You do not have
 the privileges to access it.

 Suggested User Response: If this is the output file, you need
 privileges to create a file in the directory you specified. If
 it is an input file, you need privileges to read that file from
 that particular directory.

 ?WLDLKE Non−existent file [file]

 Description: The specified file does not exist.

 Suggested User Response: This error usually occurs when the name
 of an input file is incorrect. Retype the command string with
 the correct input file name.

 6−43

 THE MAKLIB PROGRAM

 6.5 TECHNICAL NOTES

 The following is supplementary information related to editing
 libraries with MAKLIB. Section 6.5.1 describes TRACE blocks (REL
 Block type 1060). Section 6.5.2 contains the format for code
 insertion in .FIX files.

 6.5.1 Format of TRACE Block Data (REL Block Type 1060)

 MAKLIB uses the TRACE block to include, in the .REL file, information
 for verifying and changing the patch status of a program. The format
 of the TRACE block follows.

 The first part of the TRACE block is the static area. This area
 appears in each module affected by the particular edit. The static
 areas give information common to all modules affected by an edit and
 the variable gives the changing data on the particular edit as it goes
 from module to module.

 TB$HED REL Block Type Length of Block

 TB$EDT SIXBIT Edit Name (Up to 6 chars.)

 TB$STA −1 If Active Who Last Affected

 TB$MAK Who Created Date (15 BIT)

 TB$INS Who Installed Date (15 BIT)

 TB$FUT Reserved for Future Use

 TB$LEN # of Assoc. Edits # of PCO Groups

 The static area, which repeats in each module, is followed by a
 variable area. The variable area consists of two parts. The first
 gives data on the associated edit status for this module, and the
 second gives the actual program change orders (PCO’s). The length of
 each of these areas appears in the static area of the TRACE block.

 For each associated edit, the following group appears:

 TB$AEN SIXBIT Edit Name of Assoc. Edit

 TB$AES X Reserved for Future Use 0B0 If can’t be present
 1B0 If must be present

 After the associated edit groups appear (if there are any), the PCO

 6−44

 THE MAKLIB PROGRAM

 groups for that module appear. There are currently three types of
 program change groups: INSERT, REMOVE, and REINSERT. They can appear
 in any order and the total number is variable.

 INSERT PCO:

 TB$PCO PCO Type Code (1) Length of Group

 TB$DAT Instrs. INSERTed Addr. of INSERT

 TB$PAT New Addr. of Original Code Addr. of Patch Code

 REMOVE PCO:

 TB$PCO PCO Type Code (2) Length of Group

 TB$REN SIXBIT Edit Name

 RE−INSERT PCO:

 TB$PCO PCO Type Code (3) Length of Group

 TB$RIN SIXBIT Edit Name

 ALTER PCO:

 TB$PCO PCO Type Code (4) Length of Group

 TB$DAT Unused Addr. of ALTER

 TB$PAT New Addr. of Original Code Unused

 6.5.2 Format of Code Insertion

 The four formats of code insertion in a .FIX file are shown here.
 Notice that, in all cases, the patch ends with exactly two JUMPA
 instructions. Thus, the last instruction of the patch can at most
 skip a single instruction and still return control to the original
 code.

 To INSERT any instruction or series of instructions (code) BEFORE a
 location, use this format:

 .INSERT location, BEFORE, <original instruction>

 LOCATION: JUMPA %PATCH

 6−45

 THE MAKLIB PROGRAM

 %PATCH: First Patch Instruction

 Second Patch Instruction

 .
 .
 .

 Last Patch Instruction

 Original Patch Instruction

 JUMPA 1, LOCATION+1

 JUMPA 2, LOCATION +2

 Any "Literals"

 The actual label created at the location of the patched−in code is of
 the form:

 "%"<edit−name><edit−part>

 where the edit−part is from "A" to "Z", incremented for each .INSERT
 in the edit.

 To INSERT any instruction or series of instructions (code) AFTER a
 location, use this format:

 .INSERT location, AFTER, <original instruction>

 LOCATION: JUMPA %PATCH

 %PATCH: Original Instruction

 First Patch Instruction

 Second Patch Instruction

 .
 .
 .

 Last Patch Instruction

 JUMPA 1, LOCATION+1

 JUMPA 2, LOCATION+2

 Any "Literals"

 6−46

 THE MAKLIB PROGRAM

 To REPLACE a single instruction, use the format:

 .INSERT location, REPLACE, <original instruction>

 LOCATION: JUMPA %PATCH

 Original Instruction

 %PATCH: First Patch Instruction

 Second Patch Instruction

 .
 .
 .

 nTH (Last) Patch Instruction

 JUMPA 1, LOCATION+n

 JUMPA 2, LOCATION+n+1

 Any "Literals"

 If you do not insert instructions (n=0), then the return is to
 LOCATION+1 and LOCATION+2.

 To REPLACE more than one instruction at a location, use the format:

 .INSERT location REPLACE:m <original instruction>

 LOCATION: JUMPA %PATCH

 Original Instruction

 %PATCH: First Patch Instruction

 Second Patch Instruction

 .
 .
 .

 Last Instruction of Patch

 JUMPA 1, LOCATION+m

 JUMPA 2, LOCATION+m+1

 Any "Literals"

 If you do not specify m, or it is zero, the effect is the same as the

 6−47

 THE MAKLIB PROGRAM

 REPLACE keyword without an argument. In other words, one word is
 skipped over on return for every one inserted.

 6−48

 CHAPTER 7

 THE DUMPER PROGRAM

 7.1 INTRODUCTION

 DUMPER is a TOPS−20 utility program used to save files on magnetic
 tape, and later to restore any or all of these files to a specified
 directory on disk. DUMPER is available to both nonprivileged and
 privileged users. (Throughout this chapter, the term "operator" is
 occasionally used instead of privileged user.) As a nonprivileged
 user, you can use DUMPER to save your own files or any files to which
 you have access, by transferring them from the disk to a 9−track
 magnetic tape (DUMPER does not function on a 7−track magnetic tape
 drive), and later restoring them to disk. As a privileged user, you
 can use DUMPER to:

 o save other users’ files and directory information on tape

 o back up the system files (copy all files onto tape for an
 indefinite period of time)

 o archive users’ files (copy files marked for storage onto tape
 and delete them from disk)

 o migrate users’ files (copy files onto tape and delete them
 from the disk) to create added disk space

 o restore other users’ files

 o retrieve previously archived or migrated files.

 If your installation is using a Version 6−based TOPS−20 monitor,
 DUMPER supports encrypted passwords and project−programmer numbers
 (PPN). Earlier versions of DUMPER, however, do not support the
 password encryption and PPN features. Therefore, use extreme caution
 when changing versions of DUMPER and the TOPS−20 monitor. See Section
 7.6 for information on these features.

 The length of time files remain on tape is determined by each
 installation. In general, however, archived files are kept longer

 7−1

 THE DUMPER PROGRAM

 than backup files. Archiving is voluntary on the part of the
 nonprivileged user; migrating is not.

 Sections 7.2 through 7.4 describe the functions of DUMPER, the use of
 tapes, and the procedure to run DUMPER. Sections 7.5 and 7.6 describe
 the commands available to both the nonprivileged and privileged user.
 Examples are provided to illustrate the use of each command. Section
 7.7 contains an alphabetical list of all commands. Section 7.8
 contains an alphabetical list of all error messages. Before
 continuing, you should know the following terms:

 JFN Indicates a job file number, an octal
 number that represents a particular
 file.

 saveset Indicates a group of files on tape
 stored as the result of one SAVE command
 to DUMPER.

 saveset name Indicates a string of up to 200
 alphanumeric characters used as the name
 for a saveset. The specified name is
 written in the saveset header on the
 tape.

 tape set Indicates a set of one or more volumes
 (reels) of tapes grouped under a single
 name. Each tape is distinguished by a
 unique identification of up to six
 alphanumeric characters.

 NOTE

 As mentioned at the beginning of this manual, it is
 assumed that you are familiar with TOPS−20 log−in
 procedures and the basic commands. To understand
 DUMPER, you should be particularly familiar with the
 following commands: MOUNT TAPE, DISMOUNT TAPE,
 DEFINE, ASSIGN, and INFORMATION. (Refer to the
 TOPS−20 Commands Reference Manual.)

 7.2 FEATURES

 The following is a list of DUMPER’s most useful features.

 o With DUMPER, you can specify particular files to be
 transferred between disk and tape. For example, you can
 specify files using the standard TOPS−20 file specification
 format of dev:<dir>name.typ.gen and/or you can select files

 7−2

 THE DUMPER PROGRAM

 based on the dates and times that the files were created,
 modified, or accessed. Other conditions can also be set; if
 the file meets all conditions, it is transferred. (Refer to
 Section 7.5.1.)

 o You can save a set of files that exceeds one reel of magnetic
 tape. If all files specified cannot fit on one tape, DUMPER
 continues the operation on subsequent tapes (except in
 INTERCHANGE mode, which allows only one tape).

 o As a privileged user, you can transfer files marked for
 archival by another user. This ensures that those files are
 saved for a period of time (determined by each installation)
 for future use or reference.

 o As a privileged user, you can migrate files from disk to tape
 that have not been referenced within a specified period of
 time (as defined by each installation).

 o As a means of verification, you can request that file names,
 directory names, and saveset names be printed during save and
 restore operations.

 o DUMPER can read and write tapes written under older versions
 of DUMPER. Section 7.3 describes the use of tapes with
 previous versions of TOPS−20 DUMPER.

 7.3 USING TAPES WITH AND WITHOUT TAPE DRIVE ALLOCATION

 Before running DUMPER, you must have a tape mounted. Tape drive
 allocation allows you to request a tape to be mounted; TOPS−20
 fulfills that request with any free drive. The absence of tape drive
 allocation requires that you assign a specific tape drive yourself.
 If you are using unlabeled tapes, tape drive allocation has no effect
 on the content of the tapes that DUMPER writes. If you are using
 labeled tapes, tape drive allocation is required. The label
 information on the tape then helps to identify the tape without
 operator intervention. Tape drive allocation also allows you to read
 tapes written under versions of DUMPER previous to Version 4 of
 TOPS−20. The difference between the presence or absence of tape drive
 allocation is in the method of mounting and dismounting tapes, and the
 fact that you cannot read or write labeled tapes without tape drive
 allocation. A description of each method follows.

 NOTE

 You can determine whether your installation is using
 tape drive allocation by typing the TOPS−20 command
 INFORMATION SYSTEM−STATUS.

 7−3

 THE DUMPER PROGRAM

 @ INFORMATION (ABOUT) SYSTEM−STATUS<RET>
 Operator is in attendance
 Remote logins allowed
 Local logins allowed
 Pseudo−terminal logins allowed
 ARPANET terminal logins are not allowed
 Console terminal login allowed
 Accounting is being done
 Account validation is enabled
 Tape−drive allocation is enabled
 Automatic file−retrieval−waits allowed
 Scheduler bias−control setting is 11
 Class scheduling by accounts enabled,
 windfall allocated, batch class 1
 @

 If your installation does not have tape drive allocation, use a tape
 as follows:

 o Select a tape drive (for example MTA1:) and type the TOPS−20
 command ASSIGN MTA1:.

 o The system responds with MTA1: ASSIGNED.

 o Mount the tape on the assigned drive.

 o Run the DUMPER program to perform your tape operations.
 First identify the assigned tape by typing the DUMPER command
 TAPE MTA1: in response to the prompt, DUMPER>. If you omit
 the command, DUMPER looks for a device that has been defined
 as MTA−DUMPER:. To define the logical name MTA−DUMPER: as
 your assigned tape drive (and thereby save a step after
 entering DUMPER), perform the following steps:

 o Assign a tape drive.

 @ ASSIGN MTA1:<RET>

 o Define that drive as MTA−DUMPER:

 @ DEFINE MTA−DUMPER: MTA1:<RET>

 o Upon completion of tape operations, exit from DUMPER.

 o Type the TOPS−20 commands UNLOAD MTA1: and then
 DEASSIGN MTA1:. Remove the tape from the drive.

 If your installation is using tape drive allocation, mount a tape as
 follows:

 o Type the TOPS−20 command MOUNT TAPE name:. The name (for
 example, TAPE1:) is a logical name. (In the simplest case,

 7−4

 THE DUMPER PROGRAM

 the logical name is identical to the volume name.) The system
 responds with a message indicating that your request is in
 queue. For example:

 @ MOUNT TAPE TAPE1: /WRITE−ENABLED<RET>
 [Mount Request TAPE1 Queued, Request−ID 174]

 NOTE

 By typing /WRITE−ENABLED as part of the MOUNT
 TAPE command, you can write onto the tape.
 If you do not specify this switch, you can do
 only read operations (i.e., print a list of
 file names or restore files to disk).

 If your installation requires that the tape be mounted by an
 operator, the tape reel must have an external identification
 label with the specified name clearly visible to the
 operator.

 NOTE

 If your tape has never been initialized, be
 sure to tell the operator. The tape must be
 initialized before you can use it.

 o Either you or the operator (depending upon the procedure at
 your installation) mounts the tape on any available drive.
 If the tape is an unlabeled tape, it must be identified to
 the system. (Refer to the TOPS−20 Operator’s Guide.)

 o The tape is then known to the system, and the system assigns
 a tape device number. You receive a message such as:

 [Mount Request TAPE1 Queued, Request−ID 114]
 [Tape set TAPE1, volume TAPE1 mounted]
 [TAPE1: defined as MT0:]

 o Run DUMPER to perform your tape operations.

 o Upon completion of tape operations, exit from DUMPER.

 o Type the TOPS−20 command DISMOUNT TAPE name: where the name
 is the same logical name used with the MOUNT TAPE command.

 o The system responds with:

 [TAPE dismounted, logical name TAPE1: deleted]

 To assign the logical name MTA−DUMPER: before entering DUMPER, define
 the logical name using your tape name or the tape drive number you

 7−5

 THE DUMPER PROGRAM

 were assigned:

 @ DEFINE MTA−DUMPER: TAPE1:<RET>
 or
 @ DEFINE MTA−DUMPER: MTn:<RET>

 DUMPER supports both unlabeled and TOPS−20 and ANSI labeled tapes. It
 is not necessary to specify which you are mounting. However, in case
 there is a duplication of set name or identification between labeled
 and unlabeled tapes, it is wise to be specific. This avoids confusion
 for the operator mounting your tapes. For example, you can append a
 label−type switch to the MOUNT TAPE command:

 @ MOUNT TAPE TAPE1: /LABEL−TYPE:UNLABELED /WRITE−ENABLED<RET>
 or
 @ MOUNT TAPE TAPE1: /LABEL−TYPE:TOPS−20 /WRITE−ENABLED<RET>

 If you think you need more than one tape, you can identify all the
 tapes in advance by adding another switch to the MOUNT TAPE command:

 /VOLIDS:volid1,volid2,...,volidn

 If you use /VOLIDS:, the logical name in the MOUNT TAPE command now
 refers to the entire tape set. The specifications volid1 through
 volidn (for example, DH33, DH44, DH55) identify each volume of tape
 within the set. Each volume identifier (volid) can be one to six
 alphanumeric characters.

 When you type the MOUNT TAPE command, the system requests that the
 first volume of the set be mounted. When the operator has done this,
 you receive a message, such as:

 [Tape set, TAPE1, volume DH33 mounted]
 [TAPE1: defined as MT0:]

 If you wish to read the tape set, you must specify the volumes in the
 order in which they were written. You can begin with any volume in
 the set, but you cannot then specify a tape with a volid previous to
 the one with which you began. For example, if you wrote the tapes in
 the order DH33, DH44, DH55, you can request:

 /VOLIDS:DH44,DH55

 You cannot, however, request volumes DH44, DH33 nor omit a volid by
 requesting volumes DH33, DH55.

 When the first volume is mounted, you are ready to run DUMPER.

 NOTE

 If your write operations require more than the
 specified number of tapes, DUMPER automatically

 7−6

 THE DUMPER PROGRAM

 requests the operator to mount an additional tape.
 When the operation is complete, you can verify the
 additional tape in your set by typing the TOPS−20
 command INFORMATION (ABOUT) VOLUMES name: before you
 type the DISMOUNT command (where name: is the name of
 the tape set). The system responds with the volid of
 each volume.

 @ INFORMATION (ABOUT) VOLUMES (OF TAPE) TAPE1:<RET>
 Volumes of tape set TAPE1: DH33,DH44,DH55,DH56
 @

 7.4 RUNNING DUMPER

 To run DUMPER, type DUMPER and press RETURN in response to the TOPS−20
 prompt @. DUMPER prompts with its name and a right angle bracket (>):

 @ DUMPER<RET>
 DUMPER>

 NOTE

 The examples in this chapter assume use of unlabeled
 tapes and tape drive allocation enabled.

 As with TOPS−20 commands, you can type DUMPER commands in full,
 abbreviated, or recognition mode. Also, you must terminate all DUMPER
 commands by pressing RETURN.

 To leave DUMPER and return to TOPS−20 command level, type either QUIT
 or EXIT:

 DUMPER> EXIT<RET>
 @

 7.5 THE NONPRIVILEGED USER

 As a nonprivileged user, you can use DUMPER to save and restore your
 own files, or any other files to which you have access.

 The DUMPER commands to which you have access can be classified into
 three categories:

 1. Status−setting commands, which set parameters affecting
 future operation of action commands.

 2. Tape−positioning commands, which control the position of the
 tape.

 7−7

 THE DUMPER PROGRAM

 3. Action commands, which start, stop, interrupt, or continue a
 file transfer or file check.

 Sections 7.5.1 through 7.5.3 describe the commands in each category.
 Each section includes command formats and examples. Where applicable,
 command complements are included in the description. The complement
 of a command negates the command, and is formed by preceding the
 command with NO.

 7.5.1 Setting the Status of Operation

 The Status−setting commands set parameters that affect the operation
 of the action commands CHECK, RESTORE, RETRIEVE, and SAVE (refer to
 Section 7.5.3). Once you have set a parameter, it remains in effect
 until you change it or restart DUMPER. If you specify multiple
 conditions, the file you wish to transfer must satisfy all conditions
 to be transferred.

 Two parameters generally associated with these commands are date and
 time. The date can be specified in any standard TOPS−20 format such
 as: 16−May−79, 5/16/79, etc. The time can be specified either in
 24−hour format or in AM/PM format. For example 7:23 in the evening
 can be specified as 19:23 or as 7:23pm.

 For a printed explanation of all DUMPER commands, run DUMPER and type
 HELP, followed by RETURN. This lists and briefly describes all DUMPER
 commands, and lists required arguments.

 Table 7−1 lists all Status−setting commands according to their
 functions. A detailed description of each command follows the table.

 Table 7−1: Status−Setting Commands

 __

 Function Commands
 __

 Specifying the selection of BEFORE, ABEFORE
 specific files MBEFORE, SINCE,
 ASINCE, MSINCE,
 NO DATES, SUPERSEDE,
 INITIAL

 Specifying the printing DIRECTORIES, FILES
 (or suppressing) or storing LIST, SILENCE
 of file or directory names

 Specifying disk file ACCOUNT, PROTECTION

 7−8

 THE DUMPER PROGRAM

 characteristics

 Specifying the tape DENSITY, FORMAT,
 characteristics INTERCHANGE, PARITY,
 TAPE,
 SET BLOCKING−FACTOR,
 SSNAME, SET TAPE−NUMBER

 Specifying checksums to be included CHECKSUM
 when a list of saved files
 is printed
 __

 The descriptions and examples below are divided into sets according to
 the functions described in Table 7−1. The first set describes the
 selection of files to be transferred on the basis of date and time,
 and according to name, type and generation.

 NOTE

 The parameters that transfer files on the basis of
 date and time cannot be used with the CHECKSUM
 command.

 The format is the same for all BEFORE and SINCE commands. Below is a
 description of each, followed by examples of the commands.

 BEFORE (DATE AND TIME) date time

 The BEFORE command specifies that only files whose last user
 written date is before the date and time specified are to be
 transferred. The last user written date is the most recent time
 the user changed the actual data of the file. This date is
 recorded in the .FBWRT entry of the FDB, and is preserved when
 the file is copied.

 NOTE

 If time is omitted, the default is 00:00:01.

 ABEFORE (DATE AND TIME) date time

 The ABEFORE command specifies that only files whose last user
 access is before the date and time specified are to be
 transferred. The last access date is the most recent time the
 file was typed, printed, or read, but not modified. This date is
 recorded in the .FBREF entry of the FDB.
 MBEFORE (DATE AND TIME) date time

 The MBEFORE command specifies that only files whose last system
 write date is before the date and time specified are to be

 7−9

 THE DUMPER PROGRAM

 transferred. The last system write date is the most recent time
 the file was physically changed on disk. This change includes
 copying the file. The date is recorded in the .FBCRE entry of
 the FDB, and is not settable by a nonprivileged user.

 NOTE

 Refer to Table 7−4 for a description of FDB entries
 that affect DUMPER.

 SINCE (DATE AND TIME) date time

 The SINCE command specifies that only files whose last user
 written date is later than the date and time specified are to be
 transferred. The last user written date is the most recent time
 the user changed the actual data of the file. This date is
 recorded in the .FBWRT entry of the FDB, and is preserved when
 the file is copied.

 NOTE

 If time is omitted, the default is 00:00:01.

 ASINCE (DATE AND TIME) date time

 The ASINCE command specifies that only files whose last user
 access is later than the date and time specified are to be
 transferred. The last access date is the most recent time the
 file was typed, printed, or read, but not modified. This date is
 recorded in the .FBREF entry of the FDB.

 MSINCE (DATE AND TIME) date time

 The MSINCE command specifies that only files whose last system
 write date is later than the date and time specified are
 transferred. The last system write date is the most recent time
 the file was physically changed on disk. This change includes
 copying the file. The date is recorded in the .FBCRE entry of
 the FDB, and is not settable by a nonprivileged user.

 NO DATES

 The NO DATES command disables all date and time commands at once.
 There is no DATES command.

 Examples:

 7−10

 THE DUMPER PROGRAM

 1. DUMPER> BEFORE (DATE AND TIME) 5/18/84 8:00AM<RET>

 only files created, or whose contents were modified, before
 8:00 A.M. on May 18, 1984 are transferred.

 2. DUMPER> ABEFORE (DATE AND TIME) 18−MAY−84 17:00<RET>

 only files accessed by a non−write operation (i.e., those
 that were typed, printed, or read) before 5:00 P.M. on May
 18, 1984 are transferred.

 3. DUMPER> MSINCE (DATE AND TIME) MAY−1−84 8:30<RET>

 only files that have been system modified (for example,
 copied) since 8:30 A.M. on May 1, 1984 are transferred.

 4. DUMPER> SINCE (DATE AND TIME) 4−29−84<RET>

 only files that have been created or changed since the first
 minute of April 29, 1984 are transferred. (Because no time
 was specified, the default is midnight.)

 DUMPER> REWIND<RET>
 DUMPER> FILES<RET>
 DUMPER> SINCE 1−JAN−84<RET>
 DUMPER> SAVE (DISK FILES) PS:<MATO><RET>

 DUMPER tape #1, Fri 27−Jul−84 1326. , volid TAPE2

 PS:<MATO>
 PS:<MATO>DUMPER.EXAMPLE.1
 PS:<MATO>DUMPER.EXE.6
 PS:<MATO>INIT.CMD.4
 PS:<MATO>INIT.MAC.1
 PS:<MATO>LOGIN.CMD.139
 PS:<MATO>MATO.LST.1
 PS:<MATO>MS.INIT.41
 PS:<MATO>NFT.INIT.10
 PS:<MATO>QE5.TEC.5
 PS:<MATO>TV.EXE.2

 Total files dumped: 10
 Total pages dumped: 77
 CPU time, seconds: 1.03
 DUMPER>

 The SUPERSEDE command sets the condition under which DUMPER overwrites
 a disk file with a magnetic tape file of the same name and type. You
 must specify one of the following conditions:

 7−11

 THE DUMPER PROGRAM

 1. ALWAYS − when you want the tape file to overwrite the disk
 file of the same name and type regardless of the date or
 generation number of the disk file. If the disk file has a
 higher generation number, DUMPER restores the file from tape
 to disk deleting existing disk files with higher generation
 numbers. If the disk file has a lower generation number,
 DUMPER overwrites the disk file using the generation number
 of the file on tape. (Refer to the example below.)

 2. NEVER − when you do not want the tape file to overwrite the
 disk file under any circumstances. In this case, a file is
 transferred to disk only if there is no file on disk with the
 same name and type.

 3. OLDER − when the date that the tape file was last modified
 (created, read, written) is more recent than the date of the
 existing disk file with the same name and type. In that
 case, the tape file replaces the disk file. If the SUPERSEDE
 command is not specified, DUMPER assumes SUPERSEDE OLDER.

 Example:

 @ VDIRECTORY (OF FILES) TV.INI<RET>

 PS:<MATO>
 TV.INI.5;P777700 1 45(7) 7−Apr−83 14:12:56
 @ DUMPER<RET>
 DUMPER> REWIND<RET>
 DUMPER> SUPERSEDE ALWAYS<RET>
 DUMPER> RESTORE (TAPE FILES) PS:<MATO>TV.INI<RET>
 Saveset "Save of PS:<MATO>"
 Loading files into PS:<MATO>

 End of Tape.

 Total files restored: 1
 Total pages restored: 1

 The commands to activate or deactivate printing are similar. The
 defaults, however, are different, as described below.

 DIRECTORIES

 Normally, DUMPER prints directory names on your terminal as it
 saves or restores them. For example,

 @ DUMPER<RET>
 [Using MTA−DUMPER:]
 DUMPER> REWIND<RET>

 7−12

 THE DUMPER PROGRAM

 DUMPER> SAVE (DISK FILES) LINK:<*>*.*.* (AS) LINK:<*>*.*.*<RET>

 DUMPER tape #1, Fri 27−Jul−84 1300. , volid MTA−DU

 LINK:<HADY>
 LINK:<HADY.LINK6>
 LINK:<HDAVI>
 LINK:<HDAVI.TESTS.TST>
 LINK:<LINK.ALU>
 LINK:<LINK.ALU.V5M>
 .
 .
 .

 To suppress printing, type NO DIRECTORIES before the SAVE or
 RESTORE command. This is useful if you are a privileged user
 performing backup of files on many directories. For example,

 DUMPER> NO DIRECTORIES<RET>
 DUMPER> SAVE (DISK FILES) LINK:<*>*.*.* (AS) LINK:<*>*.*.*<RET>

 DUMPER tape #1, Fri 27−Jul−84 1300. , volid MTA−DU

 Total files dumped: 1413
 Total pages dumped: 4923
 CPU time, seconds: 15.04
 DUMPER>

 In the example above all files in all directories on the
 structure LINK: are saved on tape but DUMPER does not print the
 directory names on the terminal.

 To reactivate printing before the next transfer operation, type
 DIRECTORIES in response to the DUMPER prompt.

 FILES

 Normally, DUMPER does not print a list of file specs as it is
 saving or restoring them. You see only the name of the structure
 and directory, and the number of total files and pages
 transferred. For the file specs to print on your terminal, type
 FILES before the SAVE or RESTORE command.

 Example:

 @ DUMPER<RET>
 [Using MTA−DUMPER:]
 DUMPER> REWIND<RET>
 DUMPER> DIRECTORIES<RET>

 7−13

 THE DUMPER PROGRAM

 DUMPER> FILES<RET>
 DUMPER> SAVE (DISK FILES) PS:<MATO>*.*.*<RET>
 DUMPER tape #2, Fri 27−Jul−84 1309. , volid TAPE2

 PS:<MATO>
 PS:<MATO>COMAND.CMD.32
 PS:<MATO>DUMPER.EXAMPLE.1
 PS:<MATO>DUMPER.EXE.6
 PS:<MATO>FTS.INIT.2
 PS:<MATO>INIT.CMD.4
 PS:<MATO>INT.MAC.1
 PS:<MATO>LOGIN.CMD.139
 PS:<MATO>MS.INIT.41
 PS:<MATO>NFT.INIT.10
 PS:<MATO>QE5.LIB.1
 PS:<MATO>QE5.TEC.5
 PS:<MATO>SED.INIT.10
 PS:<MATO>TV.EXE.2
 PS:<MATO>TV.INI.4
 PS:<MATO>TV2.INI.4
 PS:<MATO>TVSM.INI.1

 Total files dumped: 16
 Total pages dumped: 76
 CPU time, seconds: 2.04

 To deactivate printing before the next transfer operation, type
 NO FILES in response to the DUMPER prompt.

 LIST (LOG INFORMATION ON FILE) file spec

 Normally, DUMPER does not produce a file containing a list of all
 files as it saves them on tape. If you wish to have such a list
 but know it is too long to be printed at your terminal, use the
 LIST command, including the name of the file in which you want
 the list printed. For example,

 DUMPER> LIST (LOG INFORMATION ON FILE) MATO.LST<RET>

 When the save operation is complete, you can return to TOPS−20
 command level and print the file MATO.LST or type it on your
 terminal. You cannot use LIST when doing a restore.

 Example:
 @ DUMPER<RET>
 DUMPER> REWIND<RET>
 DUMPER> SSNAME Save of PS:<MATO><RET>
 DUMPER> LIST (LOG INFORMATION ON FILE) MATO.LST<RET>
 DUMPER> SAVE PS:<MATO><RET>

 7−14

 THE DUMPER PROGRAM

 DUMPER tape #2, Fri 27−Jul−84 1310. Saveset "Save of PS:<MATO>", volid TAPE2

 Total files dumped: 16
 pages dumped: 76
 CPU time, seconds: 2.04

 If you omit a file spec with the LIST command, DUMPER
 automatically creates a file called LPT:DUMPER.LOG, which is
 printed on the line printer. If an existing file is specified,
 the new list of file specs is appended to the existing file.

 To deactivate the LIST command before the next transfer
 operation, type the command NO LIST.

 SILENCE

 As described previously, directory names are normally printed;
 file specs are not. The SILENCE command suppresses the printing
 of directories and file specs as the files are saved or restored.
 The SILENCE command is therefore equivalent to NO DIRECTORIES if
 the FILES command has not been specified. Typing NO SILENCE is
 equivalent to FILES and DIRECTORIES.

 The commands ACCOUNT and PROTECTION define the file characteristics
 for the file being restored from magnetic tape.

 ACCOUNT (OF RESTORED FILES FROM) keyword

 The ACCOUNT command specifies that any file being restored to
 disk assumes either your current account (specified as
 SYSTEM−DEFAULT) or the account of the file when it is saved on
 tape (specified as TAPE). Without the command, DUMPER defaults
 to TAPE.

 PROTECTION (OF RESTORED FILES FROM) keyword

 The PROTECTION command specifies that any file being restored
 takes either the system default protection code or the protection
 code of the file on tape. The arguments are SYSTEM−DEFAULT
 (usually 777700) or TAPE. Without the command, DUMPER defaults
 to TAPE.

 Of the commands that set tape characteristics, the TAPE command is
 used most often. The others, described below, either change the basic
 attributes of the tape, prepare it for reading or writing with another
 format, or supply an identifying name for a saveset.

 TAPE (DEVICE) name:

 7−15

 THE DUMPER PROGRAM

 The TAPE command identifies the mounted magnetic tape to DUMPER.
 The name can be either the physical device assigned to you (such
 as MTA3: or MT0:) or logical name (such as TAPE1:). If you omit
 the name:, DUMPER prints the reminder:

 Tape specification needed:

 and waits for you to supply the device name.

 As mentioned in Section 7.3, if you define your tape with the
 logical name MTA−DUMPER:, you need not type the TAPE command for
 DUMPER to access the tape.

 DENSITY (OF MAGTAPE) n

 The DENSITY command sets the density of the tape to the specified
 number of bits per inch (bits/in). The density can be 200, 556,
 800, 1600, 6250 or JOB−DEFAULT (set by the TOPS−20 command SET
 TAPE DENSITY). If you do not specify the DENSITY command, DUMPER
 uses the density listed when you type the TOPS−20 command
 INFORMATION (ABOUT) TAPE−PARAMETERS. If the tape is labeled, the
 density is predetermined by the label information on the tape.

 PARITY (OF MAGTAPE) type

 The PARITY command sets the parity of the mounted magnetic tape
 to EVEN or ODD. DUMPER normally uses the parity listed when you
 type the TOPS−20 command INFORMATION (ABOUT) TAPE−PARAMETERS (the
 system default is ODD).

 SET BLOCKING−FACTOR (TO) n (RECORDS)

 The SET BLOCKING−FACTOR command sets the number of logical
 records per physical record that DUMPER writes on tape. The
 default value is 1. The number must be in the range of 1 to 15.
 The maximum depends on the density of the tape as follows:

 Density Maximum Blocking Factor

 200 1
 556 3
 800 4
 1600 10
 6250 15

 NOTE

 INTERCHANGE mode uses a blocking factor of 1. If the
 blocking factor is changed and you specify INTERCHANGE

 7−16

 THE DUMPER PROGRAM

 mode, DUMPER resets the blocking factor to 1. If you
 specify NO INTERCHANGE, DUMPER uses whatever blocking
 factor you previously used.

 Blocking is defined as writing physical records that contain more
 than one logical record. (Versions of DUMPER previous to Release
 4 write only one logical record per physical record.) The term
 "blocking factor" refers to the number of logical records per
 physical record. The advantage of blocking is to permit DUMPER
 to fit more information on a tape than it could without blocking,
 because DUMPER reduces the number of gaps between logical
 records. This reduces the number of tapes and the amount of time
 it takes to save and restore files. However, a tape written with
 a blocking factor other than 1, and any labeled tape, cannot be
 restored by DUMPER previous to Version 4 of TOPS−20. It is not
 necessary to give this command when restoring files from tape;
 DUMPER automatically determines the blocking factor by reading
 the tape, and then processes the tape accordingly. There can be
 only one blocking factor for each tape.

 FORMAT (VERSION NUMBER IS) n

 The FORMAT command tells DUMPER the tape format that was used to
 write the tape. DUMPER accepts versions 4, 5, and 6. Version 6
 is the current tape format version. If you position a tape so
 that you are not reading from the beginning, use the FORMAT
 command to tell DUMPER what version to expect.

 INTERCHANGE (FORMAT)

 The INTERCHANGE command allows DUMPER to read and write tapes
 written or to be read by the TOPS−10 BACKUP program. (Normally
 DUMPER uses its own format.) You should never use INTERCHANGE
 when writing tapes to be read by another TOPS−20 system. DUMPER
 uses NO INTERCHANGE for its default. When restoring from an
 INTERCHANGE tape, <CTRL/E> and the date commands are ignored.

 The following example shows a tape written by the TOPS−10 BACKUP
 program followed by an example of reading a tape using the
 TOPS−20 DUMPER program in INTERCHANGE mode.

 . MOUNT BACKUP:/WRITE:YES/REELID:MACS<RET>
 [Mount Request BACKUP Queued, Request−ID 109]
 [Volume MACS Mounted on MTB263 as Logical Name BACKUP]
 BACKUP mounted, MTB263 used

 . R BACKUP<RET>

 / TAPE BACKUP<RET>

 7−17

 THE DUMPER PROGRAM

 / FILES<RET>
 / INTERCHANGE<RET>
 / REWIND<RET>
 / SAVE *.MAC[30,5153]<RET>
 !30,5153 DSKC
 DECPNT MAC
 LOCAL MAC
 READ MAC
 TRMTYP MAC
 NDBDEF MAC
 NETDPY MAC
 PRVCK MAC
 DET MAC

 "Done

 /EXIT

 .DISMOUNT BACKUP:<RET>
 MTB263 Dismounted

 .

 @
 @ MOUNT TAPE (NAME) MACS: /READ−ONLY /LABEL−TYPE:UNLABELED<RET>
 [Mount Request MACS Queued, Request−ID 127]
 [Tape set MACS, volume MACS mounted]
 [MACS: defined as MT2:]
 @ DUMPER<RET>
 DUMPER> TAPE (DEVICE) MACS:<RET>
 DUMPER> INTERCHANGE (FORMAT)<RET>
 DUMPER> REWIND<RET>
 DUMPER> FILES<RET>
 DUMPER> RESTORE (TAPE FILES) *.*.* (TO) DSK*:<*>*.*.*<RET>

 DUMPER tape # 1 , Tuesday, 18−Sep−79 1131 Volid MACS.
 Loading file(s) into MISC:<HUTCHINS>
 DECPNT.MAC (TO) DECPNT.MAC.1 [OK]
 LOCAL.MAC (TO) LOCAL.MAC.1 [OK]
 READ.MAC (TO) READ.MAC.1 [OK]
 TRMTYP.MAC (TO) TRMTYP.MAC.1 [OK]
 NDBDEF.MAC (TO) NDBDEF.MAC.1 [OK]
 NETDPY.MAC (TO) NETDPY.MAC.1 [OK]
 PRVCK.MAC (TO) PRVCK.MAC.1 [OK]
 DET.MAC (TO) DET.MAC.1 [OK]

 End of saveset
 DUMPER> EXIT<RET>
 @

 SSNAME name

 7−18

 THE DUMPER PROGRAM

 The SSNAME command specifies the name to be written in the
 saveset header on the tape or to appear when you type a RESTORE,
 SAVE, SKIP, EOT, or PRINT command. The name may contain up to
 200 alphanumeric characters, including spaces. Whenever you save
 or restore files, the saveset name prints on your terminal.

 When you do not specify a saveset name (SSNAME), DUMPER prints a
 period and a comma. The saveset name normally appears between
 the period and the comma.

 The CHECKSUM command is used in conjunction with the DUMPER SAVE and
 PRINT commands. (Refer to Section 7.5.3.)

 CHECKSUM (FILES) type

 While files are being saved, a checksum is computed. When you
 type PRINT, each filename is listed with a six−digit octal
 checksum number.

 One of two types can be specified: SEQUENTIAL or BY−PAGES. If
 you specify SEQUENTIAL, DUMPER computes a checksum for the entire
 file. (In INTERCHANGE mode, you should use only sequential
 checksums.) If you specify BY−PAGES, the checksum includes each
 word of existing pages up to the End−Of−File (EOF) pointer. When
 you type PRINT after requesting a checksum by pages, the checksum
 number is followed by the letter P, as shown in the example
 below.

 @ DUMPER<RET>
 [Using MTA−DUMPER:]
 DUMPER> REWIND<RET>
 DUMPER> CHECKSUM (FILES) BY−PAGES<RET>
 DUMPER> PRINT (DIRECTORY OF TAPE ONTO FILE) <RET>

 DUMPER tape #2 Fri 27−Jul−84 1311. saveset "Save of PS:<MATO>", volid TAPE2

 Filename Last write date Pages Checksum
 Page #1

 PS:<MATO>COMAND.CMD.32 8−Sep−83 1041 1 536370 P
 PS:<MATO>DUMPER.EXAMPLE.1 27−Jul−84 1307 1 223135 P
 PS:<MATO>DUMPER.EXE.6 27−Jul−84 1245 31 144736 P
 PS:<MATO>FTS.INIT.2 30−Jun−83 1842 1 664252 P
 PS:<MATO>INIT.CMD.4 25−Jul−84 1848 1 332727 P
 PS:<MATO>INT.MAC.1 9−Jul−84 2143 3 632501 P
 PS:<MATO>LOGIN.CMD.139 17−Apr−84 2035 1 172204 P
 PS:<MATO>MATO.LST.1 27−Jul−84 1311 1 642240 P
 PS:<MATO>MS.INIT.41 25−Jan−84 1155 1 610300 P
 PS:<MATO>NFT.INIT.10 25−Jul−84 1851 1 247324 P
 PS:<MATO>QE5.LIB.1 27−Jan−83 1351 1 042624 P
 PS:<MATO>QE5.TEC.5 9−Jul−84 2214 3 136673 P

 7−19

 THE DUMPER PROGRAM

 PS:<MATO>SED.INIT.10 18−Oct−82 0913 1 332725 P
 PS:<MATO>TV.EXE.2 20−Jan−84 1303 27 713471 P
 PS:<MATO>TV.INI.4 7−Apr−83 1412 1 632303 P
 PS:<MATO>TV2.INI.4 30−Jun−82 1512 1 103641 P
 PS:<MATO>TVSM.INI.1 6−Jan−82 1240 1 756311 P

 End of Tape.

 When the checksum of the disk file disagrees with the checksum of
 the tape file, there is an error in the file transfer.

 Two other Status−Setting commands allow you to begin a save at a
 specific file, or to continue a save onto a second reel of tape.

 INITIAL (FILESPEC) file spec

 The INITIAL command allows you to save files starting with a
 specific file specification. If you specify a file, the save
 operation begins when DUMPER encounters a matching file. DUMPER
 ignores all files until a match is seen. For example, if you
 want to begin a save starting with FILE3, type

 DUMPER> INITIAL (FILESPEC) FILE3<RET>

 SET TAPE−NUMBER (DECIMAL NUMBER) n

 The SET TAPE−NUMBER command is used for multi−reel savesets in
 either of two cases: when continuing a restore after a system
 crash, or when restoring files nonsequentially from a multi−reel
 saveset.

 7.5.2 Positioning the Tape

 Tape−Positioning commands control the position of the tape without
 transferring information between the tape and disk. These commands
 affect the tape you specified with your last TAPE command to DUMPER.
 If you did not use a TAPE command, DUMPER issues a request for one, or
 uses a tape assigned to the logical name MTA−DUMPER:. If you are
 working on a system without tape drive allocation, before entering
 DUMPER, you must assign the tape drive to your job, using the TOPS−20
 command ASSIGN.

 Table 7−2 lists the four Tape−Positioning commands and their
 functions. Following the table is a detailed description, including
 examples, of each command.

 7−20

 THE DUMPER PROGRAM

 Table 7−2: Tape−Positioning Commands

 __

 Command Function
 __

 EOT Positioning to the end of the last saveset on the
 tape

 REWIND Positioning to the beginning of the currently mounted
 tape

 SKIP n Positioning to the end of the nth from the current
 saveset

 UNLOAD Rewinding the tape entirely onto the source reel
 __

 The three commands below position the tape at specific points.

 EOT

 The EOT (End−Of−Tape) command positions the tape at the end of
 the last saveset on the tape and DUMPER prints the message:

 End of Tape.

 As DUMPER encounters each saveset between its current position
 and EOT, it prints the saveset name (but not its contents).

 Example:

 DUMPER> EOT<RET>
 Saveset "Save of PS:<MATO>"
 Saveset "Saveset #2, PS:<MATO>"
 End of Tape.

 REWIND

 The REWIND command rewinds the currently mounted volume to the
 beginning of the tape.

 If you are using a multi−reel tape set mounted by typing the
 TOPS−20 command MOUNT TAPE, you can switch to a different reel by
 typing:

 REWIND SWITCHING (TO VOLUME NUMBER) n<RET>

 7−21

 THE DUMPER PROGRAM

 With this command, n specifies the number of the reel within the
 set, not the volume id. When you type the REWIND SWITCHING
 command, DUMPER releases the currently mounted tape and requests
 the nth volume to be mounted. (If you are using labeled tapes,
 DUMPER allows you to switch to volume 1 only.) The following
 example shows a switch to the volume identified as TWO from
 volume ONE:

 @ MOUNT TAPE TAPE1: /WRITE−ENABLED /VOLIDS:ONE,TWO,THREE<RET>
 [Mount Request TAPE1 Queued, Request−ID 174]
 [Tape set TAPE1, volume ONE mounted]
 [TAPE1: defined as MT0:]
 @ DUMPER<RET>
 DUMPER> TAPE (DEVICE) TAPE1:<RET>
 DUMPER> REWIND SWITCHING (TO VOLUME NUMBER) 2<RET>
 DUMPER>

 NOTE

 If you plan to switch back and forth between volumes
 of a set, specify the /NOUNLOAD switch with the
 TOPS−20 command MOUNT TAPE. This is a request to the
 operator not to unload any of the tapes within the
 set, but to use additional tape drives so that more
 than one tape can be mounted at a time.

 SKIP (NUMBER OF SAVESETS) n

 The SKIP command moves the tape over the specified number of
 savesets. This ensures that those savesets are not deleted by
 another save. DUMPER prints the name of each saveset
 encountered, and positions the tape at the end of the nth
 saveset.

 If n is 0, the tape is positioned at the beginning of the current
 saveset. If n is a negative number, the tape backspaces by n
 savesets and is positioned at the beginning of that saveset. You
 cannot use zero or negative numbers with labeled tapes.

 Examples:

 @ DUMPER<RET>
 [Using MTA−DUMPER:]
 DUMPER> REWIND<RET>
 DUMPER> SKIP (NUMBER OF SAVESETS) 0<RET>
 Saveset "Saveset #2, PS:<MATO>"
 DUMPER>

 7−22

 THE DUMPER PROGRAM

 DUMPER> SKIP (NUMBER OF SAVESETS) −4<RET>
 Saveset "Save of PS:<MATO>"
 Beginning of tape.
 DUMPER>

 The following command releases your mounted tape from the drive.

 UNLOAD

 If your installation is not using tape drive allocation, you can
 remove your tape with UNLOAD to DUMPER.

 Example:

 DUMPER> UNLOAD<RET>

 This command, however, does not deassign the tape drive.

 7.5.3 Interacting with Tape Files

 The action commands affect the files on the tape specified by the last
 TAPE command. These commands allow you to start, stop, interrupt, or
 continue a file transfer or file check.

 The transfer commands take, as an optional argument, one or more file
 specifications. The file specifications can contain wildcard
 characters. With transfer commands (SAVE and RESTORE), you can
 indicate both input and output (source and destination) file
 specifications for each file specified. This allows the files to be
 renamed as they are saved or restored. If no destination
 specification is given, the specified files are transferred without
 being renamed. If no argument is given with the transfer commands,
 all files on your connected directory are saved onto tape, or all
 files that were saved from your connected directory, and exist in the
 current saveset, are restored to your connected directory.

 Both the SAVE and RESTORE commands can take the source and destination
 arguments. In the case of SAVE, the source is the file specification
 identifying the name and location of the file to be saved; the
 destination identifies the file name under which you want the file to
 be stored on tape. In the case of RESTORE, the source is a file
 specification identifying the file you want copied from the tape; the
 destination is a file specification identifying the name of the file
 into which you want the file copied on disk.

 With both commands, if you omit the source, DUMPER restores all files
 in the saveset corresponding to your connected directory, or saves all
 files as your connected directory. If you omit the destination with
 SAVE, DUMPER transfers the file(s) with the same file specification(s)
 as the one(s) on disk. If you omit the destination with RESTORE,

 7−23

 THE DUMPER PROGRAM

 DUMPER transfers the file(s) with the same file specification(s) as
 the one(s) on tape.

 Table 7−3 lists all action commands according to their functions. A
 detailed description of each command follows the table.

 Table 7−3: Action Commands

 __

 Command Function
 __

 ABORT Cancelling an interrupted command and
 starting a new action command

 RESTORE, SAVE, CHECK, TRANSFER
 Transferring and comparing disk and tape
 files

 PRINT Printing a list of file names on tape

 <CTRL/A> Printing status information about the
 command

 <CTRL/E>, CONTINUE Halting and continuing command operation

 TAKE Executing commands from a command file

 EXIT, QUIT Exiting to TOPS−20

 EXACT Saving or restoring files using
 system−wide logical names
 __

 SAVE (DISK FILES) source (AS) destination, source (AS) destination

 The SAVE command creates a saveset on tape, containing all the
 source files specified. To rename the files as you save them,
 you must specify source files followed by a space, followed by
 destination files. With either source or destination files you
 can use * and % wildcard characters. To transfer additional
 source and destination file specifications, you must separate
 each pair with a comma. If you do not specify destination,
 DUMPER saves all source file specifications under their original
 specifications. If you specify neither source nor destination,
 DUMPER saves all files on your connected directory into the
 saveset on tape (i.e., DUMPER assumes the file specification
 ..*).

 Examples:

 7−24

 THE DUMPER PROGRAM

 Note that in these examples, three savesets are created, one for each
 SAVE command.

 @ DUMPER<RET>
 [Using MTA−DUMPER:]
 DUMPER> REWIND<RET>
 DUMPER> FILES<RET>
 DUMPER> SAVE (DISK FILES) PS:<MATO>TV.INI.* (AS)
 PS:<MATO>TV.OLD.*<RET>

 DUMPER tape #2, Fri 27−Jul−84 1319. Saveset "Saveset #2, PS:<MATO>", Volid
TAPE2

 PS:<MATO>
 PS:<MATO>TV.INI.5 (as) PS:<MATO>TV.OLD.5

 Total files dumped: 1
 Total pages dumped: 1
 CPU time, seconds: 0.03
 DUMPER> SAVE (DISK FILES) <MOSE>*.*.* (AS) *.*.*<RET>

 DUMPER tape #2, Fri 27−Jul−84 1319. Saveset "Saveset #2, PS:<MATO>", Volid
TAPE2

 PS:<MOSE>
 PS:<MOSE>2946−CDRSRV−MAC.RED.1
 PS:<MOSE>2946−PROLOG−MAC.RED.1
 PS:<MOSE>ACCESS.CMD.11
 PS:<MOSE>ALERT.CMD.16
 PS:<MOSE>BACCESS.CMD.5
 PS:<MOSE>BATCH.CMD.7
 PS:<MOSE>BMOUNT.CMD.9
 PS:<MOSE>CF.CTL.1
 PS:<MOSE>CFSINT.DOC.1
 PS:<MOSE>CH2EX.MAC.3
 .
 .
 .

 Total files dumped: 55
 Total pages dumped: 172
 CPU time, seconds: 7

 DUMPER> NO FILES<RET>
 DUMPER> SAVE (DISK FILES) PS:<PERLMA>*.*.* (AS) *.*.*<RET>

 DUMPER tape #2, Fri 27−Jul−84 1321. , volid TAPE2

 PS:<PERLMA>

 Total files dumped: 37
 Total pages dumped: 208

 7−25

 THE DUMPER PROGRAM

 CPU time, seconds: 5.04

 NOTE

 Remember that if the NO FILES command is typed, as in
 the last SAVE example above, the file specifications
 are not listed as they are saved.

 If all files cannot fit on one tape, DUMPER requests that you mount a
 second tape. This tape is the next volume of the tape set if you type
 /VOLIDS: with the MOUNT TAPE command. If you do not specify the
 switch, the operator mounts a tape and it becomes the second volume of
 the set. When the additional tape is mounted, DUMPER resumes the save
 operation.

 It is important to note that savesets are stored on tape according to
 the position of the tape when the SAVE command is typed. If you
 position the tape at the beginning (refer to the REWIND command), the
 specified files are written there regardless of any previous files
 saved. If more than one saveset exists on the tape, they are all
 deleted when a new one is saved at the beginning of the tape. To
 avoid deleting existing savesets, position the tape at the end of the
 last saveset (EOT) or skip the number of savesets (SKIP n) you want to
 be sure to preserve.

 RESTORE (TAPE FILES) source (TO) destination, source (TO) destination

 The RESTORE command transfers the specified source files from
 magnetic tape to disk. To rename the files as you restore them,
 you must specify destination file specifications. With source
 files you may use the * and % wildcard characters; with
 destination files, you can use only the * wildcard.

 If you do not specify destination, all specified files are
 restored with the same name, type, and generation. If you do not
 specify either source or destination specifications, all files
 saved from your connected structure and connected directory are
 restored to your connected structure and directory with the same
 name, type and generation number.

 When DUMPER begins restoring files to a directory, it prints the
 message:

 Loading File(s) into <directory>

 NOTE

 If you do not see this message, DUMPER is not
 transferring the files.

 In that case, the files may already exist on disk, they may have

 7−26

 THE DUMPER PROGRAM

 been saved from a structure or directory other than your
 currently connected directory, they do not exist in the current
 saveset, or you used a wildcard expression that does not match
 the files on tape.

 If you are restoring files that were saved from a directory other
 than your own, you must specify that directory in the source file
 specification. If files exist on that directory with the same
 name and type as those on tape, DUMPER overwrites the disk files
 according to the condition specified with the SUPERSEDE command:
 ALWAYS, NEVER, or OLDER. If the SUPERSEDE command has not been
 typed, DUMPER assumes SUPERSEDE OLDER and overwrites the disk
 file only if the tape file is newer. All date commands and time
 commands are ignored when you restore from an INTERCHANGE tape.

 As is true with the SAVE command, files are restored from the
 current position on tape. If you want to omit one or more
 savesets, position the tape to the end of the last saveset to be
 omitted (SKIP n).

 Example:
 @ DUMPER<RET>
 [Using MTA−DUMPER:]
 DUMPER> REWIND<RET>
 DUMPER> SKIP (NUMBER OF SAVESETS) 2<RET>

 Saveset "Saveset #2, PS:<MATO>"
 Saveset "Saveset #3, PS:<MATO>"
 Saveset, unnamed
 DUMPER> FILES<RET>
 Saveset, unnamed
 Loading files into EXODUS:<PERLMA>
 PS:<MATO>DUMPER.EXAMPLE.1 to EXODUS:<PERLMA>DUMPER.EXAMPLE.1;P777777;AMONITOR [O
K]
 PS:<MATO>DUMPER.EXE.6 to EXODUS:<PERLMA>DUMPER.EXE.6;P777777;AMONITOR [OK]
 PS:<MATO>INIT.CMD.4 to EXODUS:<PERLMA>INIT.CMD.4;P777777;AMONITOR [OK]
 PS:<MATO>INT.MAC.1 to EXODUS:<PERLMA>INT.MAC.1;P777777;AMONITOR [OK
 PS:<MATO>LOGIN.CMD.139 to EXODUS:<PERLMA>LOGIN.CMD.139;P777700;AMONITOR [OK]
 PS:<MATO>MATO.LST.1 to EXODUS:<PERLMA>MATO.LST.1;P777777;AMONITOR [OK]
 PS:<MATO>MS.INIT.41 to EXODUS:<PERLMA>MS.INIT.41;P777700;AMONITOR [OK]
 PS:<MATO>NFT.INIT.10 to EXODUS:<PERLMA>NFT.INIT.10;P777700;AMONITOR [OK]
 PS:<MATO>QE5.TEC.5 to EXODUS:<PERLMA>QE5.TEC.5;P777777;AMONITOR [OK]
 PS:<MATO>TV.EXE.2 to EXODUS:<PERLMA>TV.EXE.2;P777777;AMONITOR [OK]
 End of Tape.

 Total files restored: 10
 Total pages restored: 77
 DUMPER>

 Once the files have been saved or restored, you can check the disk and
 tape versions to verify that the transfer was accurate.

 7−27

 THE DUMPER PROGRAM

 TRANSFER (TAPE FILES)

 The TRANSFER command is another way to restore files to disk. If
 you type,

 DUMPER> TRANSFER<RET>

 all files from all structures and directories on the tape are
 restored to your connected directory with the same name and type.
 The TRANSFER command always defaults to DSK*:<*>*.*.* for an
 input file specification and to your connected directory for a
 destination specification. If you specify both input and output
 specifications, the TRANSFER command acts as a RESTORE command
 with different default actions.

 EXACT (MODE FOR SAVE COMMAND)

 The EXACT command saves or restores files without translating
 logical names into actual structure names. The files are saved
 or restored using the logical name as it is specified.

 For example, if the system uses logical name PS: to refer to the
 structure SYSDSK: and you use the EXACT command before a SAVE
 command, the files are saved as PS:<dir>file spec. If you want
 to restore files that are saved using the EXACT command, type
 EXACT before typing RESTORE and the files are restored as
 PS:<dir>file spec.

 Files that are saved using the EXACT command cannot be restored
 using the NO EXACT command since DUMPER cannot match the files.

 To use the EXACT command, type

 DUMPER> EXACT<RET>
 DUMPER> SAVE (DISK FILES) LOGICAL NAME:<DIR> FILE SPEC<RET>

 If you want to have logical names translated, use the NO EXACT
 command. NO EXACT is the default.

 CHECK (ALL TAPE FILES)

 The CHECK command checks the File Descriptor Blocks (FDB) in the
 current saveset to make sure they agree with the FDB of the files
 on disk. If any files do not agree, DUMPER prints one or more
 error messages. Table 7−4 is a list of the possible differences
 in the FDBs that DUMPER checks.

 7−28

 THE DUMPER PROGRAM

 NOTE

 Be sure to position the tape at the beginning of
 the saveset before typing CHECK.

 Table 7−4: File Descriptor Block (FDB) Entries Checked by DUMPER

 __

 A difference
 in location Means the files do not have the same:
 __

 .FBCTL −Temporary, permanent, not−to−be−saved−by
 DUMPER, or file−class status.
 .FBPRT −File access code.
 .FBCRE −Date and time of last write to the file. It
 is modified when any program writes to the
 file. This word is changeable by a user with
 privileged capabilities.
 .FBAUT −Pointer to the string containing the name of
 the author.
 .FBGEN −Generation and directory numbers of the file.
 .FBACT −Account information.
 .FBBYV −Number of generations to retain, byte size,
 mode of the last write, or the number of
 pages.
 .FBSIZ −Number of bytes in the file. This word is
 changeable by a user with write access.
 .FBCRV −Date and time of creation of the file. This
 word is changeable by a user with write
 access.
 .FBWRT −Date and time of the last user write to the
 file. This word is changeable by a user with
 write access.
 .FBREF −Date and time of the last non−write access to
 the file. This word is changeable by a user
 with write access.
 .FBCNT −Count of writes or references.
 .FBUSW −Contents of the user−settable data area.
 .FBLWR −Pointer to the string containing the name of
 the user who last wrote to the file.
 __

 Example:

 DUMPER> REWIND<RET>
 DUMPER> CHECK (ALL TAPES FILES) <RET>

 7−29

 THE DUMPER PROGRAM

 Saveset "The check−files−for−changes"
 %Difference in .FBCRE of file SNARK:<SANTI>ET.HLP.1
 %Difference in .FBCRV of file SNARK:<SANTI>ET.HLP.1
 %Difference in .FBWRT of file SNARK:<SANTI>ET.HLP.1
 %Difference in .FBCRE of file SNARK:<SANTI>EXEDMP.HLP.1
 %Difference in .FBSIZ of file SNARK:<SANTI>EXEDMP.HLP.1
 %Difference in .FBCRV of file SNARK:<SANTI>EXEDMP.HLP.1
 %Difference in .FBWRT of file SNARK:<SANTI>EXEDMP.HLP.1
 End of Saveset.
 DUMPER>

 If a disk file is renamed before you do a check, the tape and
 disk file will not agree in either name, type, or generation. In
 this case, DUMPER prints an error message (see Section 7.8).

 You cannot use the CHECK command in combination with the date and
 time commands.

 If you want a printed list of all files saved on tape, position the
 tape to the beginning and type the PRINT command. This command
 differs from LIST in that it creates a file of file names already on
 tape. LIST creates a file of file names as DUMPER is saving the
 files.

 <CTRL/A>

 The <CTRL/A> command prints one or more lines of information.
 With all DUMPER commands, <CTRL/A> prints the name of the command
 DUMPER is processing. With SAVE commands, in addition to the
 name of the command in process, <CTRL/A> prints the name of the
 file and the number of the disk page DUMPER is currently
 processing. The <CTRL/A> will not echo on your terminal.

 @ DUMPER<RET>
 [Using MTA−DUMPER:]
 DUMPER> REWIND<RET>
 DUMPER> SAVE (DISK FILES) LINK:<*>*.*.* (AS) LINK:<*>*.*.*<RET>
 DUMPER tape #1, Fri 27−Jul−84 1300. , volid MTA−DU

 LINK:<HARY>
 LINK:<HARY.LINK6>
 LINK:<HDAVI>
 LINK:<HDAVI.TESTS.TST>
 LINK:<LINK.ALU>
 LINK:<LINK.ALU.V5M>
 <CTRL/A>
 SAVE in progress. File: LINK:<LINK.ALU.V5M>LNKHST−41.RED.1 (1)
 .
 .

 7−30

 THE DUMPER PROGRAM

 .

 PRINT (DIRECTORY OF TAPE ONTO FILE) file spec

 The PRINT command records the file specifications of the entire
 tape (beginning with the current saveset) in the specified output
 file. You can subsequently use the TOPS−20 TYPE or PRINT command
 to examine this file.

 @ DUMPER<RET>
 [Using MTA−DUMPER:]
 DUMPER> REWIND<RET>
 DUMPER> PRINT (DIRECTORY OF TAPE ONTO FILE) FILES.LST.1<RET>
 DUMPER tape #2, Fri 27−Jul−84 1311. Saveset "Save of PS:<MATO>", volid TAPE2
 End of tape.
 DUMPER> EXIT<RET>
 @ TYPE (FILE) FILES.LST<RET>

 If you omit the destination file specification, the contents of
 the current saveset are printed on your terminal. Typing
 PRINT/FAST also defaults to printing on your terminal.
 PRINT/FAST tries to limit output to 80 columns.

 TAKE (COMMANDS FROM FILE) file specification

 The TAKE command causes DUMPER to execute commands in the
 specified command file (file specification). Commands from the
 command file are executed until either the end of the command
 file or until DUMPER encounters an error. DUMPER does not echo
 commands as they are processed unless more information is needed
 or DUMPER encounters an error.

 @ DUMPER<RET>
 DUMPER> TAKE (COMMANDS FROM FILE) D.CMD<RET>

 [End work:<MATO>D.CMD.1]
 DUMPER> EXIT<RET>
 @

 If you end a command file with a TAKE command that is not followed by
 a file specification, you do not receive the [End] message shown in
 the example above.

 If necessary, you may interrupt the operation of an action or
 tape−positioning command. You may then continue the operation, or
 cancel it by typing another command.

 <CTRL/E>

 7−31

 THE DUMPER PROGRAM

 You type the <CTRL/E> command by pressing the CTRL and E keys
 simultaneously. The <CTRL/E> is not echoed on your terminal.
 This command halts the action of a SAVE, RESTORE, CHECK, RETRIEVE
 or any tape−positioning command. When DUMPER processes the
 <CTRL/E> command, it interrupts the current operation and prints:

 Interrupting...
 DUMPER>>

 You can type any status−setting command except INTERCHANGE in
 response to the prompt, and then type CONTINUE to continue the
 operation at the point at which it was interrupted.

 To start a new command, type ABORT to discard the interrupted
 command. Then type the new action command.

 CONTINUE

 The CONTINUE command allows you to continue the operation of an
 interrupted action or tape−positioning command.

 You cannot use the CONTINUE command if you have not interrupted
 DUMPER with <CTRL/E>.

 Example:

 DUMPER> REWIND<RET>
 DUMPER> SAVE (DISK FILES) LINK:<*>*.*.*<RET>
 DUMPER tape #1, Fri 27−Jul−84 1300. , volid MTA−DU

 LINK:<HARD>
 LINK:<HARD.LINK.6>
 <CTRL/E>
 Interrupting...
 DUMPER>> NO DIRECTORIES<RET>
 DUMPER>> CONTINUE (SAVE) <RET>
 Continuing SAVE command...
 <CTRL/E>
 Interrupting...
 DUMPER>> ABORT<RET>
 Aborting SAVE command...

 There are two commands to exit from the DUMPER program and return to
 TOPS−20 command level. The EXIT and QUIT commands have identical
 functions.

 Example:

 DUMPER> EXIT<RET>
 @

 7−32

 THE DUMPER PROGRAM

 or

 DUMPER> QUIT<RET>
 @

 7.5.4 Marking Files to be Archived

 If you wish to save any of your files on the installation’s archive
 tape, you can mark the files for archival. To do this, use the
 TOPS−20 ARCHIVE command. Once the operator has processed your
 request, only the File Descriptor Blocks (FDB’s) remain. The file
 names become invisible (i.e., if you take a directory of your disk
 area, the files appear to be gone). This is to assure you that your
 files have been archived and that you can no longer access or modify
 them.

 NOTE

 To see your files listed in the archive request queue,
 type the TOPS−20 command INFORMATION ARCHIVE−STATUS.

 7.6 THE PRIVILEGED USER

 As a privileged user, you can perform operations beyond the
 capabilities of a nonprivileged user. These operations include backup
 and restoration of all system files, archiving, and migrating. Below
 is a list of switches, commands, and defaults to which only privileged
 users may have access.

 o As part of the SAVE command, you may append the following
 switches:

 /FULL−INCREMENTAL to request that DUMPER save all
 specified files and reset the file save count to one.
 All information is preserved regarding the number of
 times the file has been saved. This is the command for
 a weekly system backup of all files.

 /INCREMENTAL:n to request that DUMPER save all files
 that have either not been saved at least n times, or
 have been modified since the last INCREMENTAL or
 FULL−INCREMENTAL run. This is the command for a daily
 backup of all files.

 NOTE

 If a save has not previously been done with the
 FULL−INCREMENTAL switch, specifying the INCREMENTAL

 7−33

 THE DUMPER PROGRAM

 switch will have the same results as specifying
 /FULL−INCREMENTAL (i.e., DUMPER saves all files).

 /NOINCREMENTAL to request that DUMPER not perform an
 incremental save. In this case, DUMPER saves all files,
 but does not preserve any information regarding the
 number of times the file has been saved.
 (/NOINCREMENTAL is the default.)

 NOTE

 In using any of these switches, you do not have the
 option of renaming files from disk to tape. A file
 transferred to tape has the same name as the file on
 disk. Unless one of these switches or the CREATE
 command is used, directory information is not saved
 on the tape

 /UNLOAD to request that DUMPER unload a mounted tape
 after a save.

 o You can RESTORE or RETRIEVE files from an archive or
 migration tape.

 o You can use the CREATE command to recreate an entire
 directory that has been deleted.

 o When you type SAVE or RESTORE with no specified directory,
 the default is <*> on the connected structure. (For a
 nonprivileged user, the default is the connected directory
 and structure.)

 o When you restore files, the last writer string of the file on
 disk is set to the name of the last writer at the time of the
 save. (For a nonprivileged user, the last writer string is
 set to the name of the user doing the RESTORE.)

 If your installation is running a TOPS−20 Version 6 based monitor,
 DUMPER supports encrypted passwords and project−programmer numbers
 (PPN). Earlier versions of DUMPER, however, do not support the
 password and PPN features. Therefore, use extreme caution when
 changing versions of DUMPER and the TOPS−20 monitor.

 At user level, password encryption and PPNs are not visible in DUMPER.
 These two features affect the process of creating, saving and
 restoring directories. They do not affect files.

 If, for example, you save a directory using a 4.1 version of DUMPER
 and then restore that tape using TOPS−20 Version 6, passwords are not
 handled correctly. They are not useable and you have to respecify the
 passwords using the BUILD command. See the TOPS−20 Commands Reference
 Manual for an explanation of the BUILD command. PPNs are not restored

 7−34

 THE DUMPER PROGRAM

 at all. For a detailed explanation of the compatibility between
 DUMPER versions and TOPS−20 versions, see the TOPS−20 System Manager’s
 Guide.

 Sections 7.6.1 through 7.6.6 describe the use of these privileged
 commands and switches. This manual does not include step−by−step
 procedures for performing a system backup, restore, archival run, or
 migration run. For details, refer to the TOPS−20 Operator’s Guide.

 7.6.1 Backing Up System Files and/or Other Users’ Files

 To minimize loss of disk files, you should put backup copies of all
 files on magnetic tape. In many installations, this should be done on
 a daily basis. (For details, refer to the TOPS−20 System Manager’s
 Guide.)

 Backup is done with the CREATE and SAVE commands. As a privileged
 user you have the option of doing one of three types of saves by using
 SAVE plus either /FULL−INCREMENTAL, /INCREMENTAL, or /NOINCREMENTAL.

 NOTE

 It is recommended that you specify the CREATE command
 before you perform a SAVE that is intended as a backup
 copy. With the SAVE /FULL command, the CREATE command
 writes directory information on the tape. This is
 useful if you have to restore a damaged or deleted
 directory.

 A sample backup routine for an installation might be:

 Friday night: Run DUMPER to save all system files and
 directories using /FULL−INCREMENTAL.

 All other nights: Using /INCREMENTAL:2, save all files with
 changes made since the save of the previous night. This allows
 you a margin of error in recovering files that have been
 inadvertently deleted and expunged.

 The incremental runs can be made either more or less frequently at the
 discretion of the installation. In the event of a total file system
 loss, the installation can restore the disk to the state of the most
 recent incremental by first restoring the full−incremental tapes to a
 fresh set of packs, and then restoring any incremental tapes that were
 made since the full−incremental.

 If the installation desires two sets of backup tapes (to gain an extra
 measure of safety), the above procedure can be modified as follows:

 Friday night: Run a /FULL−INCREMENTAL, followed immediately by

 7−35

 THE DUMPER PROGRAM

 another /FULL−INCREMENTAL. This creates two sets of full−save
 tapes.

 All other nights: Make two consecutive runs with /INCREMENTAL:2.
 This creates two sets of incremental save tapes, unless any file
 has been changed between saves.

 If your installation has structures other than the public structure,
 it is important to back up files on all structures. It is advisable
 to use a different tape for each structure. Furthermore, it is
 important to use a different tape for every function: backup,
 migrate, and archive.

 Example:

 The following example shows a FULL INCREMENTAL SAVE of one
 directory.

 DUMPER> <RET>
 [Using MTA−DUMPER:]
 DUMPER> SSNAME Full Incremental of one directory<RET>
 DUMPER> SAVE (DISK FILES) /FULL−INCREMENTAL PS:<MATO>*.*.*<RET>

 DUMPER tape #1, Fri 27−Jul−84 1339. Saveset "Full Incremental of one directory",
 volid TAPE2

 PS:<MATO>

 Pass 2, for Incremental Save, Starting.
 End of Pass 2.

 Total files dumped: 18
 Total pages dumped: 88
 Total directories dumped: 1

 Approx. CPU time, seconds: 2.34
 DUMPER>

 To notify users that you have SAVED, ARCHIVED, MIGRATED, or RETRIEVED
 files, use the /MAIL option to the LIST command and the MAIL command.
 Before you type your SAVE or RETRIEVE command, type

 DUMPER> LIST /MAIL filespec<RET>

 If you do not specify a filespec, DUMPER creates the file
 DUMPER−MAIL.TXT.

 After you have completed your SAVE or RETRIEVE, type

 DUMPER> MAIL (from list file) filespec<RET>

 This sends mail to the users specified in the DUMPER−MAIL.TXT file.

 7−36

 THE DUMPER PROGRAM

 If you do not specify a filespec with the MAIL command, DUMPER
 defaults to the file specified in the last LIST command.

 You cannot interrupt a MAIL command with <CTRL/A> or <CTRL/E>.

 7.6.2 Restoring Files and Directories from System Backup Tapes

 If a user accidentally deletes files from the disk, he will want to
 restore them from backup tapes. In many installations, you as a
 privileged user or operator must restore these files.

 To fill his request, mount the full save tape (of files saved on a
 weekly basis) and restore the requested files. Then, if necessary,
 mount the incremental save tape (of new or changed files saved on a
 daily basis) and restore the remainder of files in the user’s request.
 The RESTORE command is the same as for a nonprivileged user. You must
 specify the source in order to transfer the files of the user who made
 the request.

 Example:
 @ DUMPER<RET>
 [Using MTA−DUMPER:]
 DUMPER> REWIND<RET>
 DUMPER> SKIP (NUMBER OF SAVESETS) 2<RET>

 Saveset "Saveset #2, PS:<MATO>"
 Saveset "Saveset #3, PS:<MATO>"
 Saveset, unnamed
 DUMPER> FILES<RET>
 DUMPER> RESTORE (TAPE FILES) PS:<MATO>*.*.* (TO)
 EXODUS:<PERLMA>*.*.*<RET>
 Saveset, unnamed
 Loading files into EXODUS:<PERLMA>
 PS:<MATO>DUMPER.EXAMPLE.1 to EXODUS:<PERLMA>DUMPER.EXAMPLE.1;P777777;AMONITOR [O
K]
 PS:<MATO>DUMPER.EXE.6 to EXODUS:<PERLMA>DUMPER.EXE.6;P777777;AMONITOR [OK]
 PS:<MATO>INIT.CMD.4 1 to EXODUS:<PERLMA>INIT.CMD.4 1;P777777;AMONITOR [OK]
 PS:<MATO>INT.MAC.1 to EXODUS:<PERLMA>INT.MAC.1;P777777;AMONITOR [OK
 PS:<MATO>LOGIN.CMD.139 to EXODUS:<PERLMA>LOGIN.CMD.139;P777700;AMONITOR [OK]
 PS:<MATO>MATO.LST.1 to EXODUS:<PERLMA>MATO.LST.1;P777777;AMONITOR [OK]
 PS:<MATO>MS.INIT.41 to EXODUS:<PERLMA>MS.INIT.41;P777700;AMONITOR [OK]
 PS:<MATO>NFT.INIT.10 to EXODUS:<PERLMA>NFT.INIT.10;P777700;AMONITOR [OK]
 PS:<MATO>QE5.TEC.5 to EXODUS:<PERLMA>QE5.TEC.5;P777777;AMONITOR [OK]
 PS:<MATO>TV.EXE.2 to EXODUS:<PERLMA>TV.EXE.2;P777777;AMONITOR [OK]
 End of Tape.

 Total files restored: 10
 Total pages restored: 77
 DUMPER>

 If a user’s entire directory is accidentally deleted and you saved the

 7−37

 THE DUMPER PROGRAM

 directory with the CREATE option, you can restore it with the DUMPER
 command CREATE. Having entered DUMPER, type CREATE before RESTORE.
 As DUMPER restores all files and directories, it restores (creates)
 the deleted directory exactly as the directory was saved.

 The TRANSFER command is another way to restore files to disk. If you
 type:

 DUMPER> TRANSFER<RET>

 all files from all structures and directories on the tape are restored
 to your connected directory with the same name and type. The TRANSFER
 command always defaults to DSK*:<*>*.*.* for an input file
 specification and your connected directory for a destination
 specification.

 7.6.3 Archiving Marked Files

 If your installation is using the archive/virtual disk system for
 off−line storage of files, the installation establishes a schedule
 under which it runs the DUMPER program to copy files marked for
 archiving onto tape.

 Mount a tape used only for archiving and run DUMPER using the ARCHIVE
 command.

 DUMPER> ARCHIVE STR:<*>*.*.*<RET>

 If no file specification is given with the command, all files marked
 for archiving on the connected structure are transferred to tape. You
 can use wildcards to specify entire fields, as in A.*, but not
 portions of a field, as in A*.mem.

 At the beginning of the archive run, DUMPER asks:

 Is this a new tape?

 If you answer YES, DUMPER asks:

 Are you sure?

 If you answer YES again, DUMPER writes at the beginning of the tape,
 erasing anything that is currently written on it. If you answer that
 this is not a new tape, DUMPER positions the tape after the last
 saveset and appends new files to the existing files.

 7−38

 THE DUMPER PROGRAM

 When the marked files have been transferred, or the end−of−tape is
 reached, DUMPER indicates that the operation is complete and notifies
 you that Pass 2 has begun. Pass 2 is a check to determine if DUMPER
 should delete the file contents and update the archive status. Remove
 the first tape and mount a second tape. Type another ARCHIVE command.
 The purpose of this tape is to write the files again, verify them as
 on the first tape, and then delete the contents of the files from
 disk, unless the user has requested that the contents be retained.
 The files are then marked ;OFFLINE and set invisible in the user’s
 directory.

 To notify users that you have ARCHIVED files, use the /MAIL switch
 with the LIST command and the MAIL command. Refer to Section 7.6.1
 for information on these commands.

 Example:

 $ DUMPER<RET>
 DUMPER> TAPE (DEVICE) T2:<RET>
 DUMPER> REWIND<RET>
 DUMPER> FILES<RET>
 DUMPER> ARCHIVE (DISK FILES) PS:<TODAY>*.*.*<RET>
 Is this a new tape? YES<RET>
 Are you sure? YES<RET>

 DUMPER tape #1, Fri 2−Jul−84 1354. ARCHIVE , volid T2

 PS:<TODAY>
 PS:<TODAY>QE5.LIB.1
 PS:<TODAY>QE5.TEC.1

 Pass 2 started.
 Pass 2 completed.

 Total files dumped: 2
 Total pages dumped: 4
 CPU time, seconds: 0.35
 DUMPER>EXIT
 @

 7.6.4 Migrating Files

 According to the procedures of your installation, you can periodically
 migrate files (i.e., copy them onto tape and delete them from disk).
 This is not done at the user’s request. It is a means of clearing
 disk space of files that have not been referenced within a specified
 period of time. It is also a technique for returning directory disk
 usage to within its quota.

 7−39

 THE DUMPER PROGRAM

 You must specify a time period with the MIGRATE command to the REAPER
 program. When REAPER is run, it marks, for involuntary migration, all
 files that have not been used during that time period.

 After you run REAPER, run DUMPER and use the MIGRATE command. This
 dumps all files marked for migration onto the mounted tape.

 As with archiving, you use two tapes when migrating files. This
 provides a backup system in case one tape is bad or misplaced. DUMPER
 then follows the same routine as with archiving. It first asks if
 this is a new tape. When the files have been successfully migrated to
 the second tape, their contents are deleted from disk. The files then
 have an ;OFFLINE status in the user’s directory.

 To notify users that you have MIGRATED files, use the /MAIL switch
 with the LIST command and the MAIL command. Refer to Section 7.6.1
 for information on these commands.

 7.6.5 Retrieving or Restoring Archived and Migrated Files

 Once a file has been archived or migrated, the user cannot access the
 file because its contents have been deleted from disk (unless he
 specified the subcommand RETAIN with the archive request). Only the
 FDB remains. The user can, however, request a retrieval of a file by
 using the TOPS−20 RETRIEVE command. This creates an entry in the
 system retrieval queue. (The queue can be displayed by typing the
 INFORMATION RETRIEVAL−REQUESTS command.) All retrieval requests are
 kept in order according to the archived or migrated tape information.
 This information consists of the volume identification, the tape
 saveset number, and the tape file number. When you are ready to
 process the retrieval request queue, run DUMPER and use DUMPER’s
 RETRIEVE command:

 DUMPER> RETRIEVE (FILES) file spec<RET>

 If the file specification is omitted, DUMPER processes all requests in
 the queue. If a file specification is included, only those files that
 match the file specification are processed. (The file specification
 may include wildcards.) For example:

 DUMPER> RETRIEVE (FILES) PS:<TODAY>QE5.LIB<RET>

 When DUMPER selects a file or files for retrieval, it submits a mount
 request for the tape containing the file(s). After you or the
 operator have mounted that tape, DUMPER begins the retrieval process.

 7−40

 THE DUMPER PROGRAM

 NOTE

 When processing retrieval requests, you do not need to
 type the TOPS−20 command MOUNT TAPE or the DUMPER
 command TAPE. DUMPER automatically requests the tapes
 it needs.

 If you cannot find the appropriate tape, type the OPR command CANCEL
 MOUNT−REQUEST. If the operator has to refuse the mount request, you
 receive the following message:

 Mount refused by Operator
 [Additional information−opr reason optional]
 Try again?

 If you answer YES, the same tape request is tried again, even if it
 was not available the first time.

 If you answer NO, the following question appears:

 Should I ask about this tape anymore during the run?

 Answering NO means that any other requests for the tape are ignored.

 Answering YES means that additional requests for the same tape are
 allowed.

 Assuming all files can be found, only one RETRIEVE command is
 necessary to process the retrieval queue. If the files to be
 retrieved are on different tapes, DUMPER automatically unloads the
 mounted tape and submits a mount request for the next tape it needs.

 NOTE

 If you type RETRIEVE when there are no retrieval
 requests in the queue, DUMPER waits for approximately
 5 minutes. DUMPER then stops the retrieval and sends
 the message

 ?Assuming no requests in the retrieval queue.

 Whenever possible, check the queue (with the TOPS−20
 command INFORMATION RETRIEVAL−REQUESTS) before typing
 RETRIEVE.

 Example:

 $ RETRIEVE (FILES) PS:<TODAY>QE5.LIB<RET>
 QE5.LIB.1 [OK]
 $ DUMPER<RET>
 DUMPER> RETRIEVE (FILES) <RET>
 [Mounting tape volume T2]

 7−41

 THE DUMPER PROGRAM

 [Volume T2 mounted]
 PS:<TODAY>QE5.LIB.1

 Total files restored: 1
 Total pages restored: 1

 If a user deletes the file name from his directory, and therefore the
 file descriptor block (FDB), and then wishes to retrieve the file, you
 must use the RESTORE command. When you locate the file, you can
 restore it with or without the tape information. This information
 indicates whether the file is archived or migrated, and if so, onto
 which tapes. If you do not wish to restore this information with the
 file, type the command RESTORE/NOTAPE−INFORMATION. To reinstate the
 transfer of this information with the file, type the command
 RESTORE/TAPE−INFORMATION. RESTORE/TAPE−INFORMATION is the DUMPER
 default.

 To notify users that you have RETRIEVED files, use the /MAIL switch
 with the LIST command and the MAIL command. Refer to Section 7.6.1
 for information on the commands.

 7.7 DUMPER COMMANDS

 This section contains an alphabetical list of all DUMPER commands.
 Each listed command includes a brief description, command type
 (status−setting, action, or tape−positioning), and description of
 optional arguments. Where applicable, there is an indication that the
 command is for privileged users only.

 [NO] ABEFORE (DATE AND TIME) date time Status−Setting

 Saves or restores only files that were typed, printed, or read
 (as maintained by .FBREF) before the specified date and time.
 Default: Date − none; Time − 00:00:01

 ABORT Action

 Cancels an interrupted CHECK, RESTORE, SAVE, RETRIEVE or
 tape−positioning command and allows you to issue a new action
 command. ABORT can be used only after you have typed the
 <CTRL/E> command. The ABORT command does not reposition the
 tape.

 ACCOUNT (OF RESTORED FILES FROM) argument Status−Setting

 Restores files with either the system (SYSTEM−DEFAULT) account or

 7−42

 THE DUMPER PROGRAM

 the account stored with the file (TAPE).
 Default: TAPE

 ARCHIVE (DISK FILES) Action

 Saves files that have been marked for offline storage. Archiving
 is voluntary on the part of the user.

 (Privileged User Only)

 [NO] ASINCE (DATE AND TIME) date time Status−Setting

 Saves or restores only files that were typed, printed, or read
 (as maintained by .FBREF) since the specified date and time.
 Default: Date − none; Time − 00:00:01

 [NO] BEFORE (DATE AND TIME) date time Status−Setting

 Saves or restores only files that were created or modified (as
 maintained by .FBCRV and .FBWRT) before the specified date and
 time.
 Default: Date − none; Time − 00:00:01

 CHECK (ALL TAPE FILES) Action

 Checks every File Descriptor Block (FDB) in the current saveset
 against the FDBs of the corresponding files on disk.
 Corresponding files must have the same name, structure,
 directory, type, and generation number for the check to be made.
 The CHECK command cannot be used with the date and time commands.
 (Refer to Table 7−3 for a list of possible differences.)

 [NO] CHECKSUM (FILES) type Status−Setting

 Activates or suppresses checksumming during the PRINT command.
 Two types may be specified: SEQUENTIAL (for INTERCHANGE mode) or
 BY−PAGES (that checks every word of every page).
 Default: NO CHECKSUM

 CONTINUE Action

 Continues a CHECK, RESTORE, RETRIEVE, or SAVE, after you have
 interrupted the command with <CTRL/E>.

 [NO] CREATE (DIRECTORIES FROM TAPE DATA) Status−Setting

 7−43

 THE DUMPER PROGRAM

 Creates or does not create user directories from directory
 information on the tape.
 Default: NO CREATE.

 (Privileged User Only)

 <CTRL/A> Action

 Prints one line of status information. The information includes
 the command in process, and, for certain operations, the file and
 disk pages DUMPER is currently processing.

 <CTRL/E> Action

 Halts the action of a CHECK, RESTORE, RETRIEVE, SAVE, or
 tape−positioning command. DUMPER responds with INTERRUPTING...
 and its prompt. You then issue the ABORT, CONTINUE, or any
 status−setting command.

 DENSITY (OF MAGTAPE) n Status−Setting

 Sets the tape density to the given number of bits per inch
 (bits/in): 200, 556, 800, 1600, 6250, or JOB−DEFAULT (set by the
 system command SET TAPE DENSITY). If no DENSITY command is
 given, DUMPER uses the job default density on the first tape.
 This command has no effect on Labeled tapes.
 Default: The density listed in the TOPS−20 command INFORMATION
 (ABOUT) TAPE−PARAMETERS.

 [NO] DIRECTORIES Status−Setting

 Reactivates or suppresses printing, on your terminal, directory
 names as DUMPER saves or restores each directory.
 Default: DIRECTORIES

 EOT Tape−positioning

 Positions the mounted tape at the end of the last saveset written
 on the tape. DUMPER prints all existing saveset names and the
 message:

 End of Tape

 [NO] EXACT Action

 Saves or restores files without translating logical names into

 7−44

 THE DUMPER PROGRAM

 actual structure names.
 Default: NO EXACT

 EXIT Action

 Exits to TOPS−20 command level. (Same as the QUIT command.)
 [NO] FILES Status−Setting

 Reactivates or suppresses printing file specs on your terminal,
 as DUMPER saves or restores each file.
 Default: NO FILES

 FORMAT (VERSION NUMBER IS) n Status−Setting

 Allows DUMPER to read tapes written with previous versions of
 DUMPER.
 Default: Version 6

 HELP Action

 Prints a list of all valid DUMPER commands on your terminal.

 INITIAL (FILESPEC) file spec Status−Setting

 Begins a SAVE with the specified file.

 [NO] INTERCHANGE (FORMAT) Status−Setting

 Allows or does not allow DUMPER to read tapes written with the
 TOPS−10 BACKUP program or to write tapes to be read by the
 TOPS−10 BACKUP program. (INTERCHANGE should not be used when
 writing tapes to be read by another TOPS−20 system.)
 Default: DUMPER format

 [NO] LIST (LOG INFORMATION ON FILE) file spec Status−Setting

 Prints or does not print a list, in the specified file, of all
 files as DUMPER saves them.
 Default: NO LIST
 Default file spec: LPT:DUMPER.LOG

 The LIST/MAIL command creates a DUMPER−MAIL.TXT file that is used
 with the MAIL command to notify users that you have completed the
 SAVE or RESTORE operation.

 (Privileged User Only)

 7−45

 THE DUMPER PROGRAM

 Default: /NOMAIL

 MAIL file spec Action

 Sends mail notifying a user that a SAVE, ARCHIVE, MIGRATE or
 RETRIEVE has been completed.

 Default: Last file name used in the LIST/MAIL command.

 (Privileged User Only)

 [NO] MBEFORE (DATE AND TIME) date time Status−Setting

 Transfers only files modified (changed, created, appended, or
 renamed as maintained by .FBCRE) before the specified date and
 time.
 Default: Time=00:00:01

 MIGRATE Action

 Saves files that have been marked for involuntary offline storage
 by the REAPER program.

 (Privileged User Only)

 [NO] MSINCE (DATE AND TIME) date time Status−Setting

 Transfers only files modified (as maintained by .FBCRE) since the
 specified date and time.
 Default: Time=00:00:01

 NO DATES Status−Setting

 Disables all the date and time commands at once. The date and
 time commands are ABEFORE, ASINCE, BEFORE, MBEFORE, MSINCE, and
 SINCE.

 PARITY (OF MAGNETIC TAPE) parity Status−Setting

 Sets the parity of the mounted tape to EVEN or ODD.
 Default: The parity listed in the TOPS−20 command INFORMATION
 (ABOUT) TAPE−PARAMETERS

 PRINT (DIRECTORY OF TAPE ONTO FILE) destination Action

 7−46

 THE DUMPER PROGRAM

 Records a printed list of file names in the specified file. The
 list contains file specifications of all existing files on the
 entire tape beginning at the current saveset.
 Default: Prints on your terminal

 PROTECTION (OF RESTORED FILES FROM) argument Status−Setting

 Restores files with SYSTEM−DEFAULT protection or protection taken
 from TAPE.
 Default: TAPE (if the PROTECTION command is omitted).
 Argument Default: None; you must specify one or the other.

 QUIT Action

 Exits to TOPS−20 command level. (Same as the EXIT command.)

 RESTORE (TAPE FILES) source (TO) destination Action

 Restores the magnetic tape source file(s) to disk with the given
 destination file specifications. If you are restoring files from
 a directory other than your connected directory, you must specify
 that directory in the source file specification. If files exist
 in the destination directory with the same names and types as the
 files on tape, DUMPER restores the files according to the
 specification of the SUPERSEDE command: ALWAYS, NEVER, OLDER
 Default: Source file spec = all files in the current saveset
 that were saved under the connected structure and directory; if
 you are privileged, all files in all directories on your
 connected structure.
 Destination file spec = same names and types as the files on
 tape.

 (Privileged User Only):

 The FDB of each file contains information that reflects whether a
 file is archived or migrated, and, if so, the volume identifiers
 of the DUMPER tapes that contain the file. The /TAPE−INFORMATION
 switch instructs DUMPER to restore this information to the FDBs
 of the files that are being restored. /NOTAPE−INFORMATION
 requests that this information not be restored.
 Default: /TAPE−INFORMATION

 RETRIEVE (FILES) file spec Action

 Instructs DUMPER to process the requests in the system’s file
 retrieval queue.
 Default: Process all files in the queue

 7−47

 THE DUMPER PROGRAM

 (Privileged User Only)

 REWIND argument Tape−Positioning

 Positions the specified tape at the beginning of the tape. If
 the argument is CURRENT−VOLUME, DUMPER rewinds the currently
 mounted tape to the beginning. If the argument is SWITCHING (TO
 VOLUME NUMBER) n, DUMPER releases the currently mounted tape,
 requests volume n of the multi−reel tape set, and rewinds it to
 the beginning.
 Default: CURRENT−VOLUME

 SAVE (DISK FILES) source (AS) destination Action

 Saves the disk source file(s) onto magnetic tape. If all files
 cannot fit on one tape, DUMPER requests that the next volume in
 the set be mounted.
 Default: Source file spec = all files in your connected
 directory; if you are privileged, all files in all directories on
 your connected structure.
 Destination file spec = same names and types as the files on
 disk. (Privileged User Only):

 The following switches can be appended to the SAVE command:

 /FULL−INCREMENTAL for a system backup of all files. (This
 also marks all files as having been saved.)

 /INCREMENTAL:n for a daily backup of files that either have
 not been saved on at least n tapes, or have been modified
 since the last INCREMENTAL or FULL−INCREMENTAL run.
 Default: /INCREMENTAL:1

 /NOINCREMENTAL for a backup of all files. /NOINCREMENTAL
 overrides the CREATE command.

 /UNLOAD to request that DUMPER unload the tape after the
 SAVE is complete.

 Default: /NOINCREMENTAL

 NOTE

 Unless one of these switches is used, directory
 information is not saved on the tape.

 SET BLOCKING−FACTOR (TO) n (RECORDS) Status−Setting

 7−48

 THE DUMPER PROGRAM

 Sets the number of logical records per physical record written on
 tape by DUMPER. The range must be between 1 and 15.
 Default: 1 record

 SET TAPE−NUMBER (DECIMAL NUMBER) n Status−Setting

 Assigns a number to a new tape when you continue a restore after
 a crash, or when you restore a file nonsequentially from a
 multi−reel saveset.

 [NO] SILENCE Status−Setting

 Activates or suppresses the printing of directory names and file
 specifications on your terminal, as files are saved or restored.
 NO SILENCE is equivalent to FILES and DIRECTORIES.
 Default: NO FILES, DIRECTORIES

 [NO] SINCE (DATE AND TIME) date time Status−Setting

 Transfers only files created or whose contents were changed since
 the specified date and time.
 Default: Time = 00:00:01

 SKIP (NUMBER OF SAVESETS) n Tape−Positioning

 Skips over n savesets. The skip can be directed forward (n),
 backwards (−n), or to the beginning of the current saveset (0).
 Labeled tapes do not support zero or backward (−n) skips.

 SSNAME name Status−Setting

 Specifies the name to be written in the saveset header on the
 tape. The name can be any string of up to 200 characters. It is
 printed on your terminal whenever you save or restore files.
 Default: Existing saveset name, if any.

 SUPERSEDE condition Status−Setting

 Sets the condition under which DUMPER rewrites a disk file with a
 magnetic tape file of the same name and file type. You must
 specify one of three conditions:

 1. ALWAYS − to supersede the file on disk regardless of the last
 write date or generation number of that file.

 7−49

 THE DUMPER PROGRAM

 2. NEVER − to never supersede the disk file; the specified file
 is written to disk only if there is no existing disk file
 with the same name and file type.

 3. OLDER − to supersede the disk file only when the file on tape
 is newer (i.e., has a later write date and/or a higher
 generation number than the file on disk).

 Default: SUPERSEDE OLDER (if the SUPERSEDE command is omitted)

 TAKE (COMMANDS FROM FILE) file spec Action

 Instructs DUMPER to execute commands from the specified command
 file. Commands are executed until the end of the command file is
 reached or until DUMPER encounters an error. Commands are not
 echoed on the terminal as they are processed.

 TAPE (DEVICE) name: Status−Setting

 Specifies the tape device to be used for file transfers. The
 name can be either a physical device (MT1:) or a logical name
 (TAPE1:).

 NOTE

 If you define the mounted tape as MTA−DUMPER:, you can
 omit the DUMPER command TAPE. If you use the RETRIEVE
 command you do not need to use the TAPE command.

 TRANSFER Action

 Restores files from tape to disk. The TRANSFER command defaults
 to DSK*:<*>*.*.* for an input file specification and your
 connected directory for a destination specification.

 UNLOAD

 Used to rewind a tape onto the source reel if your installation
 does not have tape drive allocation enabled.

 7.8 DUMPER MESSAGES

 This section contains an alphabetical listing of all messages
 generated by DUMPER. Included with most messages are a description
 and a suggested user response. The messages printed by DUMPER fall
 into three general categories: warning messages, fatal errors, and

 7−50

 THE DUMPER PROGRAM

 those requiring some action. Warning messages are preceded by a
 percent sign (%) and indicate that something unexpected occurred, but
 that DUMPER was able to recover. In this case, verify that the
 process in progress at the time of the warning is correct. Fatal
 errors are preceded by a question mark (?), and indicate an occurrence
 that DUMPER could not handle. In this case, DUMPER aborts the
 operation, and you must fix the problem before reissuing your command
 string.

 In cases where an internal or system problem results in an error
 message, the best (and usually only) way to deal with the internal
 problem is to contact your Software Specialist or submit a Software
 Performance Report (SPR) to DIGITAL.

 Some of the messages contain information that is dependent on the
 exact command string or file you specified. These message variables
 are as follows:

 <action> A suggested course of action.

 <cmd> A DUMPER command.

 <dev> A device name.

 <dir> The name of a directory.

 <file> A file specification.

 <n> or <m> The number of a page or record, or other integer.

 <reason> The reason for the error.

 [Additional information − <reason>]

 Description: The Operator gave a reason for a tape not being
 available.

 Suggested User Response: Read the reason given and follow the
 action suggested.

 ?Assuming no requests in the retrieval queue

 Description: A RETRIEVE request was started but QUASAR, a GALAXY
 component, never sent and retrieval requests. DUMPER sends this
 message after waiting approximately 5 seconds.

 Suggested User Response: Use the INFORMATION (ABOUT)
 RETRIEVAL−REQUESTS at TOPS−20 level to see if there are any
 requests to be processed before issuing a DUMPER RETRIEVE
 command.

 7−51

 THE DUMPER PROGRAM

 [At end of tape]

 Description: DUMPER wrote or read to the end of the tape. The
 next message DUMPER types indicates what should be done.

 Suggested User Response: Do what the DUMPER message indicates.
 Most often, you will have to mount a tape.

 %Bad checksum, record <n>

 Description: A record was read with a bad checksum.

 Suggested User Response: Make a note of the record number and
 file being restored. If the file is not restored properly, try
 restoring again, possibly from another tape or on a cleaner
 drive.

 %Bad definition for MTA−DUMPER:, ignored

 Description: DUMPER found MTA−DUMPER defined, but the definition
 did not refer to a tape drive.

 Suggested User Response: Exit DUMPER and either redefine
 MTA−DUMPER or undefine it.

 %Bad physical record length, record <n>

 Description: The record DUMPER just read does not appear to be a
 DUMPER record.

 Suggested User Response: You may be encountering one of the
 following conditions: reading past the end of an incomplete
 saveset; you have a damaged tape; you have a dirty or misaligned
 tape drive or, the tape was not written by DUMPER or BACKUP.
 Check these conditions before attempting the command again.

 [Before and since commands are still in effect]

 Description: This is an informational message telling you that
 date and time commands you used during other DUMPER operations
 are still in effect.

 Suggested User Response: If you want to keep the commands,
 ignore this message. Otherwise, disable or change the commands.

 ?Can’t change tape settings mid−tape, please rewind first

 Description: You tried to change the tape density or parity
 after you started to read or write the tape.

 Suggested User Response: REWIND the tape before you change tape
 density or parity.

 7−52

 THE DUMPER PROGRAM

 ?Can’t open magtape − <reason>

 Description: DUMPER is unable to access the drive in the mode it
 needs to process your command.

 Suggested User Response: The reason for this message is usually
 one of the following: the drive is offline, the drive is
 write−protected, or the device is assigned to another job. Fix
 the condition and try again.

 %Can’t read <file> − <reason>

 Description: DUMPER tried to dump a file to tape but found it
 could not open it for read access. DUMPER has tried both read
 and read unrestricted.

 Suggested User Response: You may not have read access for the
 file or the file may be corrupted. It is also possible that you
 have not enabled your privileges. If this is the case, enable
 your privileges and try again.

 ?Can’t step to next file − <reason>

 Description: DUMPER cannot save any more files because there is
 damage to the disk. The command is aborted.

 Suggested User Response: Contact Digital Field Service.

 ?Can’t switch to next tape volume − <reason>

 Description: The next tape in the tape set is not available.

 Suggested User Response: The command is aborted when you receive
 this message. If you were performing a write operation, the
 saveset will have to be rewritten after the problem is fixed.

 %Data write error, record <n>

 Description: DUMPER wasn’t able to write a record properly.

 Suggested User Response: You do not have to take any action when
 you receive this error. DUMPER leaves the bad record on tape and
 tries to write a duplicate record as the next record.

 %Deleting <file> while superseding

 Description: DUMPER is warning you that files had to be deleted
 to perform a SUPERSEDE ALWAYS during a RESTORE.

 Suggested User Response: This is an informational message. You
 do not have to take any action. If you want to recover the
 deleted file, try the UNDELETE command after the restore is

 7−53

 THE DUMPER PROGRAM

 finished and see if the file can be undeleted. If it cannot be
 undeleted, the file is lost.

 ?Device must be DISK

 Description: For a RESTORE or SAVE command, you specified a
 device other than DISK.

 Suggested User Response: Specify a device as the device and try
 again. DUMPER only saves and restores disk files.

 ?Directory <dir> not created − <reason>

 Description: DUMPER could not create the directory specified in
 <dir>.

 Suggested User Response: Read the reason to determine what to do
 to correct the problem.

 %Directory specifications differ − not saving directory info on:
 <dir>

 Description: You are using the CREATE command with the SAVE
 command and your destination directory file specification does
 not include your source directory.

 Suggested User Response: If you use the CREATE command with the
 SAVE command, make sure that your destination directory file
 specification includes your source directory. You may use a
 wildcard for your destination directory. The CREATE command is
 used for tapes that will be used to recreate directories.

 ?DUMPER doesn’t support that tape format

 Description: You set a tape format to a value less than 4

 Suggested User Response: If you have a tape with a format of
 less than 4, the tape was not written by a Digital supported
 version of DUMPER. Either do not use the FORMAT command or else
 use the FORMAT 4 command.

 [Ending <file>]

 Description: DUMPER is informing you that it has finished
 reading a TAKE command file.

 Suggested User Response: You do not have to take any action. If
 you do not want to see this message, end your command file with
 TAKE followed by a carriage return <RET>.

 ?EOT on first record, try a rewind

 7−54

 THE DUMPER PROGRAM

 Description: DUMPER encountered an end of tape record or mark
 when it first started reading.

 Suggested User Response: First try REWIND. If the REWIND
 doesn’t succeed, it is likely that the tape you are using has
 just been initialized and has never been written to.

 %<error> − <file>

 Description: DUMPER is not saving a file. The error is given
 before the name of the file.

 Suggested User Response: Correct your file command according to
 the reason given and reissue the command.

 ?Error writing LIST file, list file ended

 Description: DUMPER encountered problems while writing the LIST
 file and has aborted the file. The command continues to process
 but the list file ends.

 Suggested User Response: Try another list file or check your
 directory quotas to make sure you have enough space for the LIST
 file.

 %Excessive retries in writing record, continuing...

 Description: DUMPER encountered problems in writing a record.
 DUMPER wrote the record multiple times and is now moving to the
 next record.

 Suggested User Response: Note the record that did not get
 written properly. Previous error messages tell you which record
 it is. Since the problem may be due to a bad spot on the tape,
 you may want to perform another save on a new tape.

 %Failed to create <dir> − <reason> − RETRYING

 Description: DUMPER encountered the problem described in
 <reason> while trying to create a directory. DUMPER tries to
 correct the error and create the directory again.

 Suggested User Response: You do not have to take any action.
 DUMPER will try to correct the problem. The directory created
 may be missing some information. The <reason> portion of the
 message indicates what did not work.

 %Failed to restore <file> because: <reason>

 Description: A RETRIEVE command did not work properly.

 Suggested User Response: Read the reason and correct the

 7−55

 THE DUMPER PROGRAM

 problem. Then try the command again.

 %File <file> needed to be opened unrestricted.

 Description: DUMPER tried to dump a file to tape but could not
 open the file for READ. UNRESTRICTED READ, however, worked.

 Suggested User Response: Try to avoid dumping files to tape that
 might be opened for write. The error message is caused by
 someone writing to the file while you were doing a SAVE. This
 message has information only. It indicates that a saved file may
 be different.

 %File <file>not found

 Description: DUMPER, while performing a CHECK, found a file on
 tape but could not find the corresponding file on disk.

 Suggested User Response: Check to see if the file is on disk.
 It may have been deleted.

 ?Illegal data mode or density for this controller

 Description: The tape drive does not work with the specified
 density or mode.

 Suggested User Response: Use the system default for density or
 mode if you encounter this problem.

 ?Illegal file specification

 Description: You typed an illegal file specification.

 Suggested User Response: Retype the command with the correct
 file name.

 ?Illegal LIST file choice

 Description: DUMPER encountered a problem with your LIST file

 Suggested User Response: Be sure you are listing files to a disk
 file or terminal and not to the tape you are saving.

 ?Illegal PRINT file choice

 Description: DUMPER encountered a problem with the PRINT file
 you specified.

 Suggested User Response: Be sure you have specified a PRINT file
 that will be written to disk or terminal and not to the tape you
 are reading.

 7−56

 THE DUMPER PROGRAM

 ?Illegal tape type

 Description: TOPS−20 only supports TOPS−20 and ANSI labeled or
 unlabeled tapes.

 Suggested User Response: Check to make sure you are using an
 unlabeled tape, a TOPS−20 or an ANSI tape and try the operation
 again.

 ?Illegal to read a labeled tape this way

 Description: Tape labels are being sent directly to DUMPER

 Suggested User Response: Either do not read the tape on an
 assigned drive, or do not specify /LABEL:BYPASS when you mount
 the tape.

 %Illegal value for format, assuming 4

 Description: DUMPER does not support the value written on the
 tape as the format value. The tape may not have been written by
 DUMPER or the tape may be damaged.

 Suggested User Response: This message needs no action. If you
 see many error messages following this message, you may have a
 damaged tape or a misaligned tape drive.

 ?In command <cmd>

 Description: DUMPER is reading a command from a TAKE file and
 cannot process the next command. The information in brackets is
 the command that DUMPER could not process.

 Suggested User Response: Correct the command indicated in the
 <cmd> field of the error message and try the command again.

 ?In file <file>

 Description: DUMPER is reading a TAKE file and cannot process
 the next command. The information in brackets is the file
 containing the command that DUMPER could not process.

 Suggested User Response: Correct the command indicated in the
 <file> field of the error message and try the command again.

 ?INTERCHANGE tapes of BLOCKING−FACTOR other than 1 are illegal
 Description: DUMPER cannot read the tape. The tape has not been
 written properly for an interchange tape. Suggested User
 Response: Rewrite the tape using BACKUP with a BLOCKING−FACTOR
 of 1.

 [Interrupt ignored]

 7−57

 THE DUMPER PROGRAM

 Description: You typed a <CTRL/A> or a <CTRL/E> as DUMPER was
 completing a command.

 Suggested User Response: You do not need to take any action.
 DUMPER ignored the <CTRL/A> or <CTRL/E>.

 ?JFN LIST overflow
 ?<error> − No more JFNs available

 Description: You have specified too many filenames in one
 command. DUMPER allows approximately 30 filenames per command.
 A wildcard specification, however, is counted as one filename.

 Suggested User Response: Correct your command file by either
 removing some of the filenames or using a wildcard and try the
 command again.

 ?May not change INTERCHANGE state mid−tape, please REWIND first

 Description: DUMPER cannot read or write tapes that have both
 INTERCHANGE and NO INTERCHANGE savesets.

 Suggested User Response: Correct your command and try the
 command again.

 ?May not read from this saveset without WHEEL or OPR

 Description: Privileges are required to read this saveset.

 Suggested User Response: Enable your privileges, reposition the
 tape, and try the command again.

 [Mounting next tape volume]

 Description: DUMPER is ready to read the next tape in the set.

 Suggested User Response: Mount or have the operator mount the
 next tape volume in the saveset.

 [Need to mount next retrieval tape]
 Provide the volid of the next retrieval tape in the set

 Description: DUMPER is doing a RETRIEVE and needs the rest of
 the file, which is on another tape.

 Suggested User Response: Type the volid (volume id) of the next
 tape in the set. DUMPER then mounts this tape and finishes the
 RETRIEVE.

 %No files dumped

 Description: The SAVE command did not dump any files to tape.

 7−58

 THE DUMPER PROGRAM

 Suggested User Response: Check your SAVE command to make sure
 you have typed it correctly.

 ?No freespace

 Description: This message indicates a problem internal to
 DUMPER.

 Suggested User Response: Contact your Digital Software Service
 Representative.

 ?No such <cmd> option

 Description: You typed an option to DUMPER command that DUMPER
 doesn’t understand.

 Suggested User Response: Check our command line for the error.
 You can type HELP to see the options that DUMPER accepts. Then
 try the command again.

 ?Not a defined command

 Description: You typed a command incorrectly or you typed a
 command that is not a DUMPER command.

 Suggested User Response: Correct your command and try it again.

 %Not loading <file> − <reason>

 Description: This message means that DUMPER is not restoring a
 file that you specified in a RESTORE command.

 Suggested User Response: Check to make sure that this file has
 not been ARCHIVED. If the file has been ARCHIVED, the RESTORE
 command will not work.

 ?Only one file specification is allowed

 Description: Some DUMPER commands accept only one file
 specification. You have typed a multiple file specification and
 DUMPER cannot process it.

 Suggested User Response: Correct the problem and issue the
 command again.

 %Requeuing <file>

 Description: DUMPER was not able to finish a RETRIEVE from a
 specific tape.

 Suggested User Response: You do not need to take any action.
 DUMPER requeues the request and tries to get the file from

 7−59

 THE DUMPER PROGRAM

 another tape.

 [Restoring BLOCKING−FACTOR to <n>]

 Description: You enabled INTERCHANGE mode at some point and
 DUMPER set the BLOCKING−FACTOR to 1. Your previous
 BLOCKING−FACTOR was saved. You have since disabled INTERCHANGE
 mode and DUMPER is reverting to your previous BLOCKING−FACTOR.

 Suggested User Response: You do not have to take any action
 unless you wish to change the BLOCKING−FACTOR to another value.

 %Retrieve aborted

 Description: QUASAR, a GALAXY component, aborted a RETRIEVE
 action.

 Suggested User Response: A user probably canceled his request.
 No action is necessary.

 %Sequence error, <n> after <m>

 Description: DUMPER encountered an error reading the tape. This
 could be caused by a damaged tape. Data may be missing from the
 file being restored. It is also possible that you are reading
 from an incomplete saveset.

 Suggested User Response: If you are sure that the tape was
 written properly, and DUMPER does not report any other tape
 errors, submit a Software Performance Report (SPR).

 [Starting from <file>]

 Description: This message is generated by the SAVE command after
 an INITIAL command was given. The name specified in <file> will
 be the first file saved on the tape.

 Suggested User Response: There is no action you need to take.
 This is confirmation of your INITIAL command.

 %Structure not mounted, skipping file <file>

 Description: DUMPER tried to retrieve a file that was on an
 unmounted structure.

 Suggested User Response: Mount the structure and try the command
 again.

 ?TAKES nested too deeply, aborting

 Description: You had TAKE commands nested too deeply.

 7−60

 THE DUMPER PROGRAM

 Suggested User Response: Remove the last TAKE in the series of
 TAKES in your command file and try your command file again, or
 you can continue manually from the point that your command file
 aborted.

 ?Tape blocking−factor is already set to <n>, please rewind first

 Description: You tried to change the tape blocking−factor after
 you began to read or write a tape.

 Suggested User Response: Set the blocking−factor before you
 write a tape. Do not try to change it in the middle of a tape.

 ?Tape is write−protected. <action>

 Description: The tape is write locked and you typed a SAVE
 command.

 Suggested User Response: Place a write ring in the tape and
 mount the tape /WRITE−ENABLED.

 ?Tape number incorrect (wrong tape mounted)

 Description: DUMPER is telling you that the tape just mounted is
 not the next tape in the series.

 Suggested User Response: Put the tapes in the proper order and
 try the command again.

 ?Tape number must be positive

 Description: You have typed an invalid number, such as 0, for a
 tape number.

 Suggested User Response: Specify a tape number that is a
 positive number.

 %Tape went offline, <action>

 Description: The tape drive went offline while DUMPER was using
 it.

 Suggested User Response: Do what is indicated in the action
 portion of the message. You may have to remount the tape or put
 the drive back online. If a question mark (?) precedes this
 message, you have to start your command over.

 ?That BLOCKING−FACTOR is illegal

 Description: You specified a value that was not between 1 and
 15. DUMPER accepts values only between 1 and 15.

 7−61

 THE DUMPER PROGRAM

 Suggested User Response: Specify a value between 1 and 15 and
 try your command again.

 ?That requires WHEEL or OPR privs

 Description: You tried to perform a privileged command without
 enabling your privileges.

 Suggested User Response: Enable your privileges or do not
 attempt to issue the command.

 ?The <cmd> command will not be legal until ABORT <cmd> is typed.
 a command is interrupted by CTRL/E.

 Description: You typed a command that is either not available
 until after a <CTRL/E> is issued, or the command is not available
 at the interrupt prompt.

 Suggested User Response: Before you type a new action command to
 an interrupted command, be sure to type the ABORT command.

 %The date and time given have not yet occurred

 Description: You entered a date and time in one of the date and
 time commands that hasn’t occurred yet.

 Suggested User Response: Set the time to a time that has passed.
 If you leave the command as you have typed it, no files are
 transferred.

 %This appears to be a BACKUP tape, turning on INTERCHANGE mode

 Description: To read this tape, INTERCHANGE mode must be turned
 on.

 Suggested User Response: You do not need to take any action.
 DUMPER turns on INTERCHANGE mode for you.

 %This appears to be a DUMPER tape, turning off INTERCHANGE mode

 Description: To read this tape, INTERCHANGE mode must be turned
 off.

 Suggested User Response: You do not need to take any action.
 DUMPER turns off INTERCHANGE mode for you.

 ?This doesn’t appear to be a DUMPER or BACKUP tape, <action>

 Description: DUMPER could not read the tape.

 Suggested User Response: Rewind the tape and try to read it
 again. If this does not work, check to make sure you are using a

 7−62

 THE DUMPER PROGRAM

 DUMPER or BACKUP tape.

 %This is a labeled tape with labels passed

 Description: Tape labels are being passed directly to DUMPER.
 This is allowed only when privileges are enabled.

 Suggested User Response: Only do this is GALAXY is unavailable
 and files must be restored. This is not a Digital−supported
 procedure.

 ?This tape is full. Please mark it.

 Description: DUMPER found there was no more room on the tape.

 Suggested User Response: Mark the tape full, and continue with a
 new tape.

 %Unrecovered data error, record <n>

 Description: DUMPER encountered an error reading the tape.

 Suggested User Response: Check the file being restored when the
 RESTORE is complete. If there are errors, try to restore it
 again from another tape or on a cleaner drive.

 %User directory is no longer valid, <file>

 Description: DUMPER tried to retrieve a file and did not find
 the directory. The file is not restored.

 Suggested User Response: If you need the file, do a RESTORE.

 7−63
 8−1

 CHAPTER 8

 PLEASE

 8.1 INTRODUCTION

 The PLEASE program allows you to communicate either with your system
 operator or with a remote−node operator. For instance, you may ask
 the operator to perform a task or ask for information about your job
 or the system, or give the operator information about your job.

 NOTE

 The PLEASE command that you use in a batch job does
 not function like the timesharing PLEASE program. For
 information on using the PLEASE command in a batch
 job, refer to the TOPS−10/TOPS−20 Batch Reference
 Manual.

 8.2 SWITCHES USED WITH PLEASE

 The PLEASE program has two switches:

 /HELP prints information about this program on your
 terminal

 /NODE:node−name:: specifies the node name of the operator,
 other than your system operator, that you
 wish to communicate with. You must terminate
 the node name with two colons (::).

 8.3 MESSAGE TERMINATORS USED WITH PLEASE

 <RET> the only terminator for a message on the
 PLEASE command line. (The message must be
 limited to a single line.)

 8−1

 PLEASE

 <ESC> a valid terminator only for a message being
 sent in dialogue mode. It indicates that you
 do not expect a reply, and returns you to
 system level.

 <CTRL/Z> a valid terminator for a message being sent
 in dialogue mode. It indicates that you want
 to wait for a reply from the operator.

 8.4 RUNNING PLEASE

 To send a message to your own system operator, you can use PLEASE in
 either the DIALOGUE or MESSAGE mode.

 The simplest way to enter DIALOGUE Mode is to type PLEASE, followed by
 a one−line message, and then press RETURN. The PLEASE program
 acknowledges the message and notes the time your operator received it.
 You then see your operator’s reply. That is followed by a prompt from
 PLEASE, which indicates that you are now in DIALOGUE mode and can
 respond with one or more additional messages, as in the following
 example:

 @ PLEASE When is the system scheduled to go down?<RET>
 [PLSOPN Operator at KL2102 has been notified at 10:04:42]
 10:05:58 From Operator at terminal 3
 => At noon
 Enter text, terminate with CRTL/Z to wait for response
 Or ESC to send message and Exit
 Thank you <ESC>
 @

 To terminate DIALOGUE mode, you press ESC after your final reply to
 the operator in order to return to the system level. In this case,
 the user has chosen to end the interchange by thanking the operator
 and typing <ESC> to return to the system level.

 The second way to communicate with your own operator in DIALOGUE Mode
 is to type PLEASE and then press RETURN. You enter DIALOGUE mode
 immediately and receive the PLEASE prompt for your message, as

 @ PLEASE<RET>
 Enter text, terminate with CTRL/Z to wait for response
 Or ESC to send message and exit <RET>

 When is the system scheduled to go down?<CTRL/Z>

 To communicate with a remote−node operator, type PLEASE, the /NODE
 switch, and the node name of the remote operator, and press RETURN to
 enter dialogue mode and receive the PLEASE prompt for your message, as

 8−2

 PLEASE

 @ PLEASE/NODE:node−name::<RET>
 Enter text, terminate with CTRL/Z to wait for response
 Or ESC to send message and exit <RET>

 From the point where you enter DIALOGUE mode and receive the message
 prompt, messages to both your own operator and to a remote−node
 operator follow the same format.

 If you do not need a reply from the operator, use MESSAGE mode. After
 you have accessed PLEASE and typed your message, type <ESC> to end the
 message. PLEASE acknowledges that the message has been sent and
 records the time the operator received it, before returning you to the
 system level, as

 @ PLEASE I am leaving here at 4 today<ESC>
 [PLSOPN Operator at KL2102 has been notified at 11:00:03]

 In this example, you have sent a message to the operator and have been
 immediately returned to the system level. You are not requesting an
 immediate reply.

 8.5 PLEASE MESSAGES

 Following is an alphabetized list of the PLEASE messages.
 Informational messages are enclosed in brackets ([]). Warning
 messages are preceded by a percent sign (%); for these, processing
 will continue but perhaps not in the way you intended. Fatal error
 messages are preceded by a question mark (?); such messages may
 terminate the program.

 Each message is followed by a brief explanation of the problem you may
 encounter, which may in itself tell you what you need to do to correct
 it. In most cases, simply trying the procedure again is sufficient to
 correct the problem. In some cases, though, you may need to call your
 Software Specialist.

 ?PLSBHR − Bad help request, use PLEASE/HELP

 Reminder: Use no other text after PLEASE/HELP.

 ?PLSCME − Command error

 Description: You typed an invalid command.

 ?PLSEFO − Error from ORION

 Description: ORION, which is the message dispatcher, has received a

 8−3

 PLEASE

 message from PLEASE which it cannot send on to the operator. Possibly
 you typed a message containing format errors (size, text, etc.)

 ?PLSEPM − Error in parsing message

 Description: You terminated a PLEASE command line improperly. The
 only legal command−line terminator is carriage return <RET>.

 %PLSNHA − No help available

 Description: The program cannot find the HLP:PLEASE.HLP file. It may
 not be in the right place and hence not in the system search list.

 Suggested user response: Check whether the file was properly taken
 off the distribution tape, or whether it is incorrectly protected from
 you, or whether there may be a physical device error.

 ?PLSNIN − Node name user typed not in network, or specified without
 trailing double colon

 Description: You either specified a node name that does not exist or
 you improperly terminated a node name.

 %PLSNOP − No operator in attendance

 Description: The system is unattended. However, your message will be
 sent to the operator, and PLEASE will notify you at what time the
 operator received it.

 [PLSOPN − Operator at [node:name] has been notified at [time]]

 Description: PLEASE simply notifies you that the operator has
 received your message.

 ?PLSSSE − Switch syntax error

 Description: you gave a command that contains an illegal switch, or a
 switch delimiter (a slash) with no switch name following it.

 ?PLSSUT − Switch used twice

 Reminder: You can use a switch only once in a given command.

 ?PLSUMO − Unrecognized message from ORION

 8−4

 PLEASE

 Description: ORION has responded with an unknown message instead of
 the response you expected from the operator. Perhaps you are running
 an old version of PLEASE. (Check the title page of this manual for
 the current version number.)

 8−5

 8−6

 INDEX

 −A− −C−

 /A switch /C switch
 CREF, 5−4 CREF, 5−4
 FILCOM, 4−3 FILCOM, 4−4
 ABEFORE command, 7−9, 7−42 CHECK command, 7−9, 7−28, 7−43
 ABORT command, 7−32, 7−42 CHECKSUM command, 7−19, 7−43
 ACCOUNT command, 7−15, 7−42 Command strings
 Action commands DUMPER, 7−7 to CREF, 5−3
 7−13, 7−23 to 7−32 FILCOM, 4−1
 /ALL switch, 3−5 MAKLIB, 6−4, 6−7, 6−13, 6−18,
 .ALTER pseudo−op, 6−20 6−25
 /APPEND switch, 6−8 Comparing ASCII and Binary files,
 ARCHIVE command, 7−33, 7−38, 7−43 4−1
 Archiving files, 7−1, 7−3, 7−33, Computing checksums, 7−19
 7−38 CONTINUE command, 7−32, 7−43
 ASCII comparisons, 4−4 CREATE command, 7−35, 7−37, 7−44
 Blank lines in, 4−4 CREF
 Ignoring comments, 4−4 Advancing tape, 5−4
 Ignoring spaces, 4−4, 4−5 Backspacing tape, 5−4
 Including labels and offsets, Canceling switches, 5−4
 4−4 Command strings, 5−3
 Output file, 4−5 Error messages, 5−10
 Printing status only, 4−5 File specifications, 5−3
 /Update mode, 4−5 HELP, 5−4
 ASINCE command, 7−10, 7−43 Including Op Code table, 5−4
 Assigning tape drives, 7−4 Indirect files, 5−5
 .ASSOCIATED pseudo−op, 6−20 Listing selected tables, 5−4
 Moving to end of tape, 5−4
 Octal codes in error messages,
 −B− 5−14
 Preserving input files, 5−4
 /B switch Requesting starting line number,
 CREF, 5−4 5−4
 FILCOM, 4−4 Status codes in error messages,
 Backing up system files, 7−1, 5−14
 7−33, 7−35 Suppressing OPDEF/Macro table,
 Batch jobs 5−4
 MAIL, 2−7 Suppressing symbol table, 5−4
 PLEASE command, 8−1 SWITCH.INI file, 5−5
 BEFORE command, 7−9, 7−43 Used as a command, 5−5
 Binary comparisons, 4−9 Used as a program, 5−5
 Expanding save files, 4−10 CREF switches
 Nonstandard file types, 4−9 Alphabetical listing, 5−4
 Output files, 4−9 .CRF files, 5−15
 Printing status, 4−9 COMPILE command, 5−1
 Sharable save files, 4−9 Control characters, 5−15, 5−16
 Binary file types, 4−2 Creating, 5−1

 Index−1

 .CRF files (Cont.) DUMPER commands (Cont.)
 Input file format, 5−15 EXIT, 7−7, 7−45
 Cross−reference listings, 5−1 FILES, 7−13, 7−45
 table types, 5−3 FORMAT, 7−17, 7−45
 <CTRL/A> command, 7−30, 7−44 HELP, 7−45
 <CTRL/E> command, 7−31, 7−44 INITIAL, 7−20, 7−45
 INTERCHANGE, 7−3, 7−16, 7−17,
 −D− 7−45
 LIST, 7−14, 7−45
 /D switch, 5−4 MAIL, 7−36
 .DATE pseudo−op, 6−20 MBEFORE, 7−10, 7−46
 Deassigning tape drives, 7−4 MIGRATE, 7−40, 7−46
 /DELETE switch, 6−10 MSINCE, 7−10, 7−46
 DENSITY command, 7−16, 7−44 NO DATES, 7−10, 7−46
 Dialogue Mode in PLEASE, 8−2 PARITY, 7−16, 7−46
 DIRECTORIES command, 7−12, 7−44 PRINT, 7−30, 7−31, 7−47
 Dismounting tapes, 7−5 PROTECTION, 7−15, 7−47
 DUMPER QUIT, 7−7, 7−47
 Action commands, 7−7 to 7−13, RESTORE, 7−23, 7−26, 7−47
 7−23 to 7−32 RETRIEVE, 7−40, 7−47
 Command files, 7−31 REWIND, 7−21, 7−48
 Date and time commands, 7−8 to SAVE, 7−23, 7−24, 7−33, 7−35,
 7−13 7−48
 Error messages, 7−50 SET BLOCKING−FACTOR, 7−16, 7−49
 File specifications, 7−23, 7−26, SET TAPE−NUMBER, 7−20, 7−49
 7−28, 7−38 SILENCE, 7−15, 7−49
 Interrupting commands, 7−31 SINCE, 7−10, 7−49
 Printing file specifications, SKIP, 7−22, 7−49
 7−31 SSNAME, 7−19, 7−49
 Status−setting commands, 7−7 to SUPERSEDE, 7−11, 7−27, 7−49
 7−13 TAKE, 7−31, 7−50
 Tape−positioning commands, 7−7 TAPE, 7−15, 7−50
 to 7−13, 7−20 to 7−23 TRANSFER, 7−28, 7−38, 7−50
 DUMPER command UNLOAD, 7−23, 7−50
 EXACT, 7−28, 7−45 DUMPER switches
 DUMPER commands /FULL−INCREMENTAL, 7−33, 7−48
 ABEFORE, 7−9, 7−42 /INCREMENTAL, 7−33, 7−48
 ABORT, 7−32, 7−42 /LABEL−TYPE, 7−6
 ACCOUNT, 7−15, 7−42 /MAIL, 7−36, 7−45
 Alphabetical listing, 7−42 /NOINCREMENTAL, 7−34, 7−48
 ARCHIVE, 7−33, 7−38, 7−43 /UNLOAD, 7−34, 7−48
 ASINCE, 7−10, 7−43 /VOLIDS, 7−6
 BEFORE, 7−9, 7−43
 CHECK, 7−9, 7−28, 7−43
 CHECKSUM, 7−19, 7−43 −E−
 CONTINUE, 7−32, 7−43
 CREATE, 7−35, 7−37, 7−44 /E switch, 4−9
 <CTRL/A>, 7−30, 7−44 .EDIT pseudo−op, 6−20
 <CTRL/E>, 7−31, 7−44 Edits
 DENSITY, 7−16, 7−44 listing library file, 6−6
 DIRECTORIES, 7−12, 7−44 .ENDE pseudo−op, 6−23
 EOT, 7−21, 7−44 .ENDI pseudo−op, 6−23

 Index−2

 Entry points in library files, File specifications, 1−2
 6−5 CREF, 5−3
 EOT command, 7−21, 7−44 DUMPER, 7−23, 7−26, 7−28, 7−38
 Error messages FILCOM, 4−1
 CREF, 5−10 MAKLIB, 6−3, 6−4, 6−7, 6−18,
 DUMPER, 7−50 6−25
 FILCOM, 4−14 FILES command, 7−13, 7−45
 MAIL, 2−7 .FIX files, 6−19
 MAKLIB, 6−27 Code format, 6−45
 PLEASE, 8−3 pseudo−ops, 6−20
 RDMAIL, 3−8 /FIX switch, 6−6, 6−25
 EXACT command, 7−28, 7−45 FORMAT command, 7−17, 7−45
 Executable programs, 6−1 /FULL−INCREMENTAL switch, 7−33,
 EXIT command 7−48
 DUMPER, 7−7, 7−45
 /EXTRACT switch, 6−11 −H−

 /H switch
 −F− CREF, 5−4
 FILCOM, 4−4, 4−9
 FILCOM HELP
 Binary comparisons, 4−9 CREF, 5−4
 Binary file types, 4−2 DUMPER, 7−45
 Command strings, 4−1 FILCOM, 4−4
 Error messages, 4−14 /HELP switch
 File specifications, 4−1 PLEASE, 8−1
 Help, 4−4 RDMAIL, 3−5
 Logical names, 4−2
 FILCOM ASCII switches
 /A, 4−3 −I−
 /B, 4−4
 /C, 4−4 /INCREMENTAL switch, 7−33, 7−48
 /H, 4−4 Index block, 6−18
 /nL, 4−4 /INDEX switch, 6−18
 /O, 4−4 Indirect files
 /Q, 4−5 CREF, 5−5
 /S, 4−5 MAIL, 2−5
 /T, 4−5 INITIAL command, 7−20, 7−45
 /U, 4−5 .INSERT pseudo−op, 6−21
 FILCOM Binary switches /INSERT switch, 6−13
 /E, 4−9 INTERCHANGE command, 7−3, 7−16,
 /H, 4−9 7−17, 7−45
 /nL, 4−9
 /nU, 4−9
 /Q, 4−9 −J−
 /T, 4−9
 /W, 4−9 Job file number (JFN), 7−2
 /X, 4−10
 FILCOM switches
 Alphabetical listing, 4−12 −K−
 File Descriptor Block (FDB)
 entries, 7−28 /K switch, 5−4

 Index−3

 −L− MAKLIB (Cont.)
 Command strings, 6−4, 6−7, 6−13,
 /LABEL−TYPE switch, 7−6 6−18, 6−25
 Labeled tapes, 7−3, 7−6 Editing modules, 6−44
 Libraries Error messages, 6−27
 Changing, 6−2 File specifications, 6−3, 6−4,
 Creating, 6−10 6−7, 6−18, 6−25
 Deleting local symbols, 6−18 Inserting code, 6−21
 Deleting modules, 6−10 MAKLIB pseudo−ops
 Editing, 6−2, 6−6, 6−19, 6−44 .Fix file assembler, 6−23
 Entry points, 6−5 .FIX files, 6−20
 Identify master modules, 6−8 .REINSERT, 6−6
 Information about, 6−2, 6−4 .REMOVE, 6−6
 Inserting new modules, 6−13 MAKLIB switches
 Modifying, 6−2, 6−18 Alphabetical listing, 6−26
 Producing subsets, 6−11 /APPEND, 6−8
 Replacing modules, 6−16 /DELETE, 6−10
 Library files, 6−2 /EXTRACT, 6−11
 LIST command, 7−14, 7−45 /FIX, 6−6, 6−25
 /LIST switch, 3−5, 6−4 /Index, 6−18
 /LOAD switch, 6−7 /INSERT, 6−13
 Loading instructions /LIST, 6−4
 listing, 6−7 /LOAD, 6−7
 Log Files DUMPER, 7−14 /MASTER, 6−8
 Logical names, 1−3 /NOLOCALS, 6−18
 DUMPER, 7−4, 7−6, 7−15 /POINTS, 6−5
 FILCOM, 4−2 /REPLACE, 6−16
 specifying, 6−3
 −M− /TRACE, 6−6
 /WHO, 6−6, 6−25
 /M switch, 5−4 MBEFORE command, 7−10, 7−46
 MAIL Message Mode in PLEASE, 8−3
 Checking new messages, 2−4 Message−of−the−Day, 2−6, 3−1
 Entering text, 2−2 /MESSAGE−OF−THE−DAY switch, 3−5
 Error messages, 2−7 MIGRATE command, 7−40, 7−46
 Error recovery, 2−3 Migrating files, 7−1, 7−3, 7−39
 From Batch jobs, 2−7 .MODULE pseudo−op, 6−20
 Indirect files, 2−5 Modules (see also, MAKLIB)
 Non−files−only directories, 2−5 Mounting tapes, 7−5, 7−6
 Sending to group, 2−4 Refusal, 7−27
 Specifying names, 2−1 MSINCE command, 7−10, 7−46
 Specifying subject, 2−2 Multiple reel tapes, 7−20, 7−21
 System messages, 2−6
 MAIL command, 7−36 −N−
 Mail messages
 Notifying user of, 3−2 .NAME pseudo−op, 6−20
 /MAIL switch, 7−36, 7−45 Naming tapes, 7−15
 MAIL.CPY files, 2−10 /nL switch, 4−4, 4−9
 MAILER Program, 2−10 NO DATES command, 7−10, 7−46
 MAKLIB /NODE switch, 8−1, 8−3
 Adding modules, 6−8 /NOINCREMENTAL switch, 7−34, 7−48
 Assembler, 6−23 /NOLOCAL switch, 6−18

 Index−4

 Non−files−only directories in RDMAIL switches (Cont.)
 MAIL, 2−5 Alphabetical listing, 3−4
 /nU switch, 4−9 /HELP, 3−5
 /LIST, 3−5
 −O− /MESSAGE−OF−THE−DAY, 3−5
 /PERUSE, 3−6
 /O switch /STOP, 3−7
 CREF, 5−4 Reading messages
 FILCOM, 4−4 Using date and time, 3−3
 Octal codes in error messages, Using switches, 3−3
 5−14 Reading system messages, 3−5
 Organizing REL modules, 6−1 Receiving mail from RDMAIL, 3−1
 Overwriting disk files, 7−11 .REINSERT pseudo−op, 6−6, 6−23
 .REMOVE pseudo−op, 6−6, 6−22
 −P− REPEAT LOGIN−MESSAGES command,
 3−1
 /P switch, 5−4 /REPLACE switch, 6−16
 PARITY command, 7−16, 7−46 RESTORE command, 7−23, 7−26, 7−47
 Password encryption, 7−1, 7−34 Restoring files to disk, 7−1,
 /PERUSE switch, 3−6 7−26, 7−28, 7−37, 7−40
 PLEASE RETRIEVE command, 7−40, 7−47
 Batch jobs, 8−1 Retrieving files from tape, 7−1,
 Dialogue Mode, 8−2 7−40
 Error messages, 8−3 REWIND command, 7−21, 7−48
 Message Mode, 8−3 Rewinding tape, 5−4
 PLEASE switches
 /HELP, 8−1 −S−
 /NODE, 8−1, 8−3
 /POINTS switch, 6−5 /S switch
 PRINT command, 7−30, 7−31, 7−47 CREF, 5−4
 Printing DUMPER status FILCOM, 4−5
 information, 7−30 SAVE command, 7−23, 7−24, 7−33,
 Printing messages, 3−5 7−35, 7−48
 Project−programmer−numbers (PPN), Savesets, 7−2, 7−19
 7−1, 7−34 Skipping, 7−22
 PROTECTION command, 7−15, 7−47 Saving files on tape, 7−1, 7−2,
 7−24
 −Q− Specific files, 7−20
 Sending messages, 2−1
 /Q switch, 4−5, 4−9 Checking new messages, 2−4
 QUIT command, 7−7, 7−47 Entering text, 2−2
 Error recovery, 2−3
 −R− Errors in, 2−3
 From Batch jobs, 2−7
 /R switch, 5−4 Non−files−only directories, 2−5
 RDMAIL PLEASE, 8−1
 Error messages, 3−8 Specifying names, 2−1
 Getting Help, 3−5 Specifying subject, 2−2
 Printing messages, 3−5 TALK command, 2−4
 Reading messages, 3−2 To a group, 2−4
 RDMAIL switches To all users, 2−6
 /ALL, 3−5 To remote−node operator, 8−1

 Index−5

 Sending messages (Cont.) Tapes (Cont.)
 To system operator, 8−1 Mounting, 7−5, 7−6
 Using indirect files, 2−5 Multiple reels, 7−20, 7−21
 SET BLOCKING−FACTOR command, 7−16, Naming, 7−15
 7−49 Positioning, 7−7, 7−20 to 7−23,
 SET MAIL−WATCH command, 3−2 7−26
 SET TAPE−NUMBER command, 7−20, Reading TOPS−10, 7−17
 7−49 Setting number of records, 7−16
 SILENCE command, 7−15, 7−49 Unlabeled, 7−3, 7−5
 SINCE command, 7−10, 7−49 Version numbers, 7−17
 SKIP command, 7−22, 7−49 Writing TOPS−10, 7−17
 SSNAME command, 7−19, 7−49 TRACE blocks, 6−6, 6−19
 Status codes in error messages, Format of, 6−44
 5−14 /TRACE switch, 6−6
 Status−setting commands DUMPER, TRANSFER command, 7−28, 7−38,
 7−7 to 7−13 7−50
 /STOP switch, 3−7
 SUPERSEDE command, 7−11, 7−27, −U−
 7−49
 SWITCH.INI file, 5−5 /U switch, 4−5
 SYMBOL blocks, 6−18 Unlabeled tapes, 7−3, 7−5
 UNLOAD command, 7−23, 7−50
 /UNLOAD switch, 7−34, 7−48
 −T−
 −V−
 /T switch
 CREF, 5−4 .VERSION pseudo−op, 6−20
 FILCOM, 4−5, 4−9 /VOLIDS switch, 7−6
 TAKE command, 7−31, 7−50
 TAPE command, 7−15, 7−50 −W−
 Tape drive allocation, 7−3
 Assigning tape drives, 7−4 /W switch
 Deassigning tape drive, 7−4 CREF, 5−4
 Dismounting tapes, 7−3 FILCOM, 4−9
 Labeled tapes, 7−3 /WHO switch, 6−6, 6−25
 Mounting tapes, 7−3
 Unlabeled tapes, 7−3 −X−
 Tape sets, 7−2
 Reading, 7−6 /X switch, 4−10
 Tape volume identification, 7−6
 Tapes −Z−
 Dismounting, 7−5
 Labeled, 7−3, 7−6 /Z switch, 5−4

 Index−6

